BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 17521173)

  • 1. Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the amber molecular dynamics package.
    de M Seabra G; Walker RC; Elstner M; Case DA; Roitberg AE
    J Phys Chem A; 2007 Jul; 111(26):5655-64. PubMed ID: 17521173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmark Study of the SCC-DFTB Approach for a Biomolecular Proton Channel.
    Liang R; Swanson JM; Voth GA
    J Chem Theory Comput; 2014 Jan; 10(1):451-462. PubMed ID: 25104919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Density Functionals, SCC-DFTB, Neglect of Diatomic Differential Overlap (NDDO) Models and Molecular Mechanics Methods for Prolyl-Leucyl-Glycinamide (PLG) and Structural Derivatives.
    Wood RL; Young-Dixon BJ; Roy A; Gay BC; Johnson RL; Amin EA
    Theochem; 2010 Mar; 944(1-3):76-82. PubMed ID: 20401321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of the SCC-DFTB Model for Description of Five-Membered Ring Carbohydrate Conformations: Comparison to Force Fields, High-Level Electronic Structure Methods, and Experiment.
    Islam SM; Roy PN
    J Chem Theory Comput; 2012 Jul; 8(7):2412-23. PubMed ID: 26588973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metadynamics combined with auxiliary density functional and density functional tight-binding methods: alanine dipeptide as a case study.
    Cuny J; Korchagina K; Menakbi C; Mineva T
    J Mol Model; 2017 Mar; 23(3):72. PubMed ID: 28204939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the SCC-DFTB method to H+(H2O)6, H+(H2O)21, and H+(H2O)22.
    Choi TH; Jordan KD
    J Phys Chem B; 2010 May; 114(20):6932-6. PubMed ID: 20433189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Description of phosphate hydrolysis reactions with the Self-Consistent-Charge Density-Functional-Tight-Binding (SCC-DFTB) theory. 1. Parameterization.
    Yang Y; Yu H; York D; Elstner M; Cui Q
    J Chem Theory Comput; 2008; 4(12):2067-2084. PubMed ID: 19352441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The implementation of a fast and accurate QM/MM potential method in Amber.
    Walker RC; Crowley MF; Case DA
    J Comput Chem; 2008 May; 29(7):1019-31. PubMed ID: 18072177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing Effective Simulation Protocols for β- and α/β-Mixed Peptides. I. QM and QM/MM Models.
    Zhu X; Yethiraj A; Cui Q
    J Chem Theory Comput; 2007 Jul; 3(4):1538-49. PubMed ID: 26633224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding.
    Fox H; Newman KE; Schneider WF; Corcelli SA
    J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCC-DFTB calculation of the static first hyperpolarizability: from gas phase molecules to functionalized surfaces.
    Nénon S; Champagne B
    J Chem Phys; 2013 May; 138(20):204107. PubMed ID: 23742454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibiotic binding to dizinc beta-lactamase L1 from Stenotrophomonas maltophilia: SCC-DFTB/CHARMM and DFT studies.
    Xu D; Guo H; Cui Q
    J Phys Chem A; 2007 Jul; 111(26):5630-6. PubMed ID: 17388313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the computationally efficient self-consistent-charge density-functional tight-binding method to magnesium-containing molecules.
    Cai ZL; Lopez P; Reimers JR; Cui Q; Elstner M
    J Phys Chem A; 2007 Jul; 111(26):5743-50. PubMed ID: 17555305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method.
    Xie L; Liu H
    J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the range of applicability of structure- and energy-adjusted QM/MM link bonds II: Optimized link bond parameters for density functional tight binding approaches.
    Gallmetzer HG; Hofer TS
    J Comput Chem; 2022 Apr; 43(11):746-756. PubMed ID: 35239208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method.
    Witek HA; Irle S; Morokuma K
    J Chem Phys; 2004 Sep; 121(11):5163-70. PubMed ID: 15352808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QM/MM study of the monomeric red fluorescent protein DsRed.M1.
    Sanchez-Garcia E; Doerr M; Hsiao YW; Thiel W
    J Phys Chem B; 2009 Dec; 113(52):16622-31. PubMed ID: 19994834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An extensible interface for QM/MM molecular dynamics simulations with AMBER.
    Götz AW; Clark MA; Walker RC
    J Comput Chem; 2014 Jan; 35(2):95-108. PubMed ID: 24122798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.
    Choi TH; Liang R; Maupin CM; Voth GA
    J Phys Chem B; 2013 May; 117(17):5165-79. PubMed ID: 23566052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.