BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17521332)

  • 21. The unique serine/threonine phosphatase from the minimal bacterium Mycoplasma synoviae: biochemical characterization and metal dependence.
    Menegatti ACO; Vernal J; Terenzi H
    J Biol Inorg Chem; 2015 Jan; 20(1):61-75. PubMed ID: 25370051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structural analysis and metal-dependent stability and activity studies of the ColE7 endonuclease domain in complex with DNA/Zn2+ or inhibitor/Ni2+.
    Doudeva LG; Huang H; Hsia KC; Shi Z; Li CL; Shen Y; Cheng YS; Yuan HS
    Protein Sci; 2006 Feb; 15(2):269-80. PubMed ID: 16434744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
    Gonzalez RL; Tinoco I
    J Mol Biol; 1999 Jun; 289(5):1267-82. PubMed ID: 10373367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NMR structure of varkud satellite ribozyme stem-loop V in the presence of magnesium ions and localization of metal-binding sites.
    Campbell DO; Bouchard P; Desjardins G; Legault P
    Biochemistry; 2006 Sep; 45(35):10591-605. PubMed ID: 16939211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution.
    Das AK; Helps NR; Cohen PT; Barford D
    EMBO J; 1996 Dec; 15(24):6798-809. PubMed ID: 9003755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A revised mechanism for the alkaline phosphatase reaction involving three metal ions.
    Stec B; Holtz KM; Kantrowitz ER
    J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution.
    Eshaghi S; Niegowski D; Kohl A; Martinez Molina D; Lesley SA; Nordlund P
    Science; 2006 Jul; 313(5785):354-7. PubMed ID: 16857941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallographic identification of metal-binding sites in Escherichia coli inorganic pyrophosphatase.
    Kankare J; Salminen T; Lahti R; Cooperman BS; Baykov AA; Goldman A
    Biochemistry; 1996 Apr; 35(15):4670-7. PubMed ID: 8664256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of protein phosphatase 2C inhibitors by virtual screening.
    Rogers JP; Beuscher AE; Flajolet M; McAvoy T; Nairn AC; Olson AJ; Greengard P
    J Med Chem; 2006 Mar; 49(5):1658-67. PubMed ID: 16509582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution structure of the RNase H domain of the HIV-1 reverse transcriptase in the presence of magnesium.
    Pari K; Mueller GA; DeRose EF; Kirby TW; London RE
    Biochemistry; 2003 Jan; 42(3):639-50. PubMed ID: 12534276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-resolution structure of the diphtheria toxin repressor complexed with cobalt and manganese reveals an SH3-like third domain and suggests a possible role of phosphate as co-corepressor.
    Qiu X; Pohl E; Holmes RK; Hol WG
    Biochemistry; 1996 Sep; 35(38):12292-302. PubMed ID: 8823163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using soft X-rays for a detailed picture of divalent metal binding in the nucleosome.
    Wu B; Davey CA
    J Mol Biol; 2010 May; 398(5):633-40. PubMed ID: 20350553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism.
    Beernink PT; Segelke BW; Hadi MZ; Erzberger JP; Wilson DM; Rupp B
    J Mol Biol; 2001 Apr; 307(4):1023-34. PubMed ID: 11286553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elucidation of the active conformation of the APS-kinase domain of human PAPS synthetase 1.
    Sekulic N; Dietrich K; Paarmann I; Ort S; Konrad M; Lavie A
    J Mol Biol; 2007 Mar; 367(2):488-500. PubMed ID: 17276460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures.
    Klabunde T; Sträter N; Fröhlich R; Witzel H; Krebs B
    J Mol Biol; 1996 Jun; 259(4):737-48. PubMed ID: 8683579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of bacteriophage lambda protein phosphatase with Mn(II): evidence for the formation of a [Mn(II)]2 cluster.
    Rusnak F; Yu L; Todorovic S; Mertz P
    Biochemistry; 1999 May; 38(21):6943-52. PubMed ID: 10346916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of the protein histidine phosphatase SixA in the multistep His-Asp phosphorelay.
    Hamada K; Kato M; Shimizu T; Ihara K; Mizuno T; Hakoshima T
    Genes Cells; 2005 Jan; 10(1):1-11. PubMed ID: 15670209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Function analysis of conserved amino acid residues in a Mn(2+)-dependent protein phosphatase, Pph3, from Myxococcus xanthus.
    Mori Y; Takegawa K; Kimura Y
    J Biochem; 2012 Sep; 152(3):269-74. PubMed ID: 22668558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression and purification of human calcineurin alpha from Escherichia coli and assessment of catalytic functions of residues surrounding the binuclear metal center.
    Mondragon A; Griffith EC; Sun L; Xiong F; Armstrong C; Liu JO
    Biochemistry; 1997 Apr; 36(16):4934-42. PubMed ID: 9125515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.