BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 17521444)

  • 1. Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment.
    Jothi R; Przytycka TM; Aravind L
    BMC Bioinformatics; 2007 May; 8():173. PubMed ID: 17521444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative assessment of performance and genome dependence among phylogenetic profiling methods.
    Snitkin ES; Gustafson AM; Mellor J; Wu J; DeLisi C
    BMC Bioinformatics; 2006 Sep; 7():420. PubMed ID: 17005048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved method for identifying functionally linked proteins using phylogenetic profiles.
    Cokus S; Mizutani S; Pellegrini M
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S7. PubMed ID: 17570150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting protein linkages in bacteria: which method is best depends on task.
    Karimpour-Fard A; Leach SM; Gill RT; Hunter LE
    BMC Bioinformatics; 2008 Sep; 9():397. PubMed ID: 18816389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
    Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages.
    Date SV; Marcotte EM
    Nat Biotechnol; 2003 Sep; 21(9):1055-62. PubMed ID: 12923548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using phylogeny to improve genome-wide distant homology recognition.
    Abeln S; Teubner C; Deane CM
    PLoS Comput Biol; 2007 Jan; 3(1):e3. PubMed ID: 17238281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards the identification of essential genes using targeted genome sequencing and comparative analysis.
    Gustafson AM; Snitkin ES; Parker SC; DeLisi C; Kasif S
    BMC Genomics; 2006 Oct; 7():265. PubMed ID: 17052348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of evolutionarily stable fragments of cellular pathways by hierarchical clustering of phyletic patterns.
    Glazko GV; Mushegian AR
    Genome Biol; 2004; 5(5):R32. PubMed ID: 15128446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards validating the hypothesis of phylogenetic profiling.
    Loganantharaj R; Atwi M
    BMC Bioinformatics; 2007 Nov; 8 Suppl 7(Suppl 7):S25. PubMed ID: 18047725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of reference genome selection on the performance of computational methods for genome-wide protein-protein interaction prediction.
    Muley VY; Ranjan A
    PLoS One; 2012; 7(7):e42057. PubMed ID: 22844541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A universal operon predictor for prokaryotic genomes.
    Li G; Che D; Xu Y
    J Bioinform Comput Biol; 2009 Feb; 7(1):19-38. PubMed ID: 19226658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lineage-specific gene loss following mitochondrial endosymbiosis and its potential for function prediction in eukaryotes.
    Gabaldón T; Huynen MA
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii144-50. PubMed ID: 16204094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-genome prokaryotic phylogeny.
    Henz SR; Huson DH; Auch AF; Nieselt-Struwe K; Schuster SC
    Bioinformatics; 2005 May; 21(10):2329-35. PubMed ID: 15166018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A global gene evolution analysis on Vibrionaceae family using phylogenetic profile.
    Vitulo N; Vezzi A; Romualdi C; Campanaro S; Valle G
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S23. PubMed ID: 17430568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes.
    Arakawa K; Yamada Y; Shinoda K; Nakayama Y; Tomita M
    BMC Bioinformatics; 2006 Mar; 7():168. PubMed ID: 16553966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of physical and functional protein-protein interaction prediction methods for detecting biological pathways.
    Muley VY; Ranjan A
    PLoS One; 2013; 8(1):e54325. PubMed ID: 23349851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational evaluation of TIS annotation for prokaryotic genomes.
    Hu GQ; Zheng X; Ju LN; Zhu H; She ZS
    BMC Bioinformatics; 2008 Mar; 9():160. PubMed ID: 18366730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refined phylogenetic profiles method for predicting protein-protein interactions.
    Sun J; Xu J; Liu Z; Liu Q; Zhao A; Shi T; Li Y
    Bioinformatics; 2005 Aug; 21(16):3409-15. PubMed ID: 15947018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing the all-pairs quartet distance on a set of evolutionary trees.
    Stissing M; Mailund T; Pedersen CN; Brodal GS; Fagerberg R
    J Bioinform Comput Biol; 2008 Feb; 6(1):37-50. PubMed ID: 18324744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.