These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17521457)

  • 61. MicroRNA duplication accelerates the recruitment of new targets during vertebrate evolution.
    Luo J; Wang Y; Yuan J; Zhao Z; Lu J
    RNA; 2018 Jun; 24(6):787-802. PubMed ID: 29511046
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Multiplicity of Buc copies in Atlantic salmon contrasts with loss of the germ cell determinant in primates, rodents and axolotl.
    Škugor A; Tveiten H; Johnsen H; Andersen Ø
    BMC Evol Biol; 2016 Oct; 16(1):232. PubMed ID: 27784263
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Extracting functional trends from whole genome duplication events using comparative genomics.
    Hermansen RA; Hvidsten TR; Sandve SR; Liberles DA
    Biol Proced Online; 2016; 18():11. PubMed ID: 27168732
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Atlantic salmon genome provides insights into rediploidization.
    Lien S; Koop BF; Sandve SR; Miller JR; Kent MP; Nome T; Hvidsten TR; Leong JS; Minkley DR; Zimin A; Grammes F; Grove H; Gjuvsland A; Walenz B; Hermansen RA; von Schalburg K; Rondeau EB; Di Genova A; Samy JK; Olav Vik J; Vigeland MD; Caler L; Grimholt U; Jentoft S; Våge DI; de Jong P; Moen T; Baranski M; Palti Y; Smith DR; Yorke JA; Nederbragt AJ; Tooming-Klunderud A; Jakobsen KS; Jiang X; Fan D; Hu Y; Liberles DA; Vidal R; Iturra P; Jones SJ; Jonassen I; Maass A; Omholt SW; Davidson WS
    Nature; 2016 May; 533(7602):200-5. PubMed ID: 27088604
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Models for gene duplication when dosage balance works as a transition state to subsequent neo-or sub-functionalization.
    Teufel AI; Liu L; Liberles DA
    BMC Evol Biol; 2016 Feb; 16():45. PubMed ID: 26897341
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Compensatory Drift and the Evolutionary Dynamics of Dosage-Sensitive Duplicate Genes.
    Thompson A; Zakon HH; Kirkpatrick M
    Genetics; 2016 Feb; 202(2):765-74. PubMed ID: 26661114
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structural and agonist properties of XCL2, the other member of the C-chemokine subfamily.
    Fox JC; Nakayama T; Tyler RC; Sander TL; Yoshie O; Volkman BF
    Cytokine; 2015 Feb; 71(2):302-11. PubMed ID: 25497737
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tempo and mode of gene duplication in mammalian ribosomal protein evolution.
    Dharia AP; Obla A; Gajdosik MD; Simon A; Nelson CE
    PLoS One; 2014; 9(11):e111721. PubMed ID: 25369106
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Extensive local gene duplication and functional divergence among paralogs in Atlantic salmon.
    Warren IA; Ciborowski KL; Casadei E; Hazlerigg DG; Martin S; Jordan WC; Sumner S
    Genome Biol Evol; 2014 Jun; 6(7):1790-805. PubMed ID: 24951567
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Expression evolution facilitated the convergent neofunctionalization of a sodium channel gene.
    Thompson A; Vo D; Comfort C; Zakon HH
    Mol Biol Evol; 2014 Aug; 31(8):1941-55. PubMed ID: 24782440
    [TBL] [Abstract][Full Text] [Related]  

  • 71. On the need for mechanistic models in computational genomics and metagenomics.
    Liberles DA; Teufel AI; Liu L; Stadler T
    Genome Biol Evol; 2013; 5(10):2008-18. PubMed ID: 24115604
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phylogenomics of prokaryotic ribosomal proteins.
    Yutin N; Puigbò P; Koonin EV; Wolf YI
    PLoS One; 2012; 7(5):e36972. PubMed ID: 22615861
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The effect of functional compensation among duplicate genes can constrain their evolutionary divergence.
    Bozorgmehr JE
    J Genet; 2012; 91(1):1-8. PubMed ID: 22546821
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Toward a general model for the evolutionary dynamics of gene duplicates.
    Konrad A; Teufel AI; Grahnen JA; Liberles DA
    Genome Biol Evol; 2011; 3():1197-209. PubMed ID: 21920903
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The evolution of vertebrate tetraspanins: gene loss, retention, and massive positive selection after whole genome duplications.
    Huang S; Tian H; Chen Z; Yu T; Xu A
    BMC Evol Biol; 2010 Oct; 10():306. PubMed ID: 20939927
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Does negative auto-regulation increase gene duplicability?
    Warnecke T; Wang GZ; Lercher MJ; Hurst LD
    BMC Evol Biol; 2009 Aug; 9():193. PubMed ID: 19664220
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication.
    Sato Y; Hashiguchi Y; Nishida M
    BMC Evol Biol; 2009 Jun; 9():127. PubMed ID: 19500364
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evolution of multiple phosphodiesterase isoforms in stickleback involved in cAMP signal transduction pathway.
    Sato Y; Hashiguchi Y; Nishida M
    BMC Syst Biol; 2009 Feb; 3():23. PubMed ID: 19232106
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication.
    Presser A; Elowitz MB; Kellis M; Kishony R
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):950-4. PubMed ID: 18199840
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evaluating dosage compensation as a cause of duplicate gene retention in Paramecium tetraurelia.
    Hughes T; Ekman D; Ardawatia H; Elofsson A; Liberles DA
    Genome Biol; 2007; 8(5):213. PubMed ID: 17521457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.