These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 17521681)
21. Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system. Rodrigues LA; Mistro DC; Petrovskii S Bull Math Biol; 2011 Aug; 73(8):1812-40. PubMed ID: 20972714 [TBL] [Abstract][Full Text] [Related]
22. Complex dynamics in a three-level trophic system with intraspecies interaction. Peet AB; Deutsch PA; Peacock-López E J Theor Biol; 2005 Feb; 232(4):491-503. PubMed ID: 15588631 [TBL] [Abstract][Full Text] [Related]
23. Dynamical behavior of two predators competing over a single prey. Gakkhar S; Singh B; Naji RK Biosystems; 2007; 90(3):808-17. PubMed ID: 17574733 [TBL] [Abstract][Full Text] [Related]
24. The effect of colored noise on spatiotemporal dynamics of biological invasion in a diffusive predator-prey system. Wang W; Li W; Li Z; Zhang H Biosystems; 2011 Apr; 104(1):48-56. PubMed ID: 21232576 [TBL] [Abstract][Full Text] [Related]
25. Modeling the Effect of Prey Refuge on a Ratio-Dependent Predator-Prey System with the Allee Effect. Verma M; Misra AK Bull Math Biol; 2018 Mar; 80(3):626-656. PubMed ID: 29368079 [TBL] [Abstract][Full Text] [Related]
26. Effect of delay in a Lotka-Volterra type predator-prey model with a transmissible disease in the predator species. Haque M; Sarwardi S; Preston S; Venturino E Math Biosci; 2011 Nov; 234(1):47-57. PubMed ID: 21784082 [TBL] [Abstract][Full Text] [Related]
27. Antagonistic and synergistic interactions among predators. Huxel GR Bull Math Biol; 2007 Aug; 69(6):2093-104. PubMed ID: 17554588 [TBL] [Abstract][Full Text] [Related]
28. Bifurcation analysis of the predator-prey model with the Allee effect in the predator. Sen D; Ghorai S; Banerjee M; Morozov A J Math Biol; 2021 Dec; 84(1-2):7. PubMed ID: 34970714 [TBL] [Abstract][Full Text] [Related]
30. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. González-Olivares E; González-Yañez B; Mena-Lorca J; Flores JD Math Biosci Eng; 2013 Apr; 10(2):345-67. PubMed ID: 23458304 [TBL] [Abstract][Full Text] [Related]
31. Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey. González-Olivares E; Rojas-Palma A Bull Math Biol; 2011 Jun; 73(6):1378-97. PubMed ID: 20830610 [TBL] [Abstract][Full Text] [Related]
32. Predator-prey models with component Allee effect for predator reproduction. Terry AJ J Math Biol; 2015 Dec; 71(6-7):1325-52. PubMed ID: 25697834 [TBL] [Abstract][Full Text] [Related]
33. Local and global dynamics of a prey-predator system with fear, Allee effect, and variable attack rate. P SH; Kumar A; K P R Chaos; 2024 Sep; 34(9):. PubMed ID: 39298348 [TBL] [Abstract][Full Text] [Related]
34. The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs. Krivan V Am Nat; 2007 Nov; 170(5):771-82. PubMed ID: 17926298 [TBL] [Abstract][Full Text] [Related]
35. Dynamics of age-structured and spatially structured predator-prey interactions: individual-based models and population-level formulations. McCauley E; Wilson WG; de Roos AM Am Nat; 1993 Sep; 142(3):412-42. PubMed ID: 19425984 [TBL] [Abstract][Full Text] [Related]
36. Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion. Wang M Math Biosci; 2008 Apr; 212(2):149-60. PubMed ID: 18346760 [TBL] [Abstract][Full Text] [Related]
37. Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Ye J; Wang Y; Jin Z; Dai C; Zhao M Math Biosci Eng; 2022 Jan; 19(4):3402-3426. PubMed ID: 35341257 [TBL] [Abstract][Full Text] [Related]
38. The role of transmissible diseases in the Holling-Tanner predator-prey model. Haque M; Venturino E Theor Popul Biol; 2006 Nov; 70(3):273-88. PubMed ID: 16905167 [TBL] [Abstract][Full Text] [Related]
39. Critical slowing down as an indicator of transitions in two-species models. Chisholm RA; Filotas E J Theor Biol; 2009 Mar; 257(1):142-9. PubMed ID: 19084025 [TBL] [Abstract][Full Text] [Related]
40. [Invasion of an intermediate predator: the dynamics of fish populations in the mathematical model of a trophic chain (as applied to the Syamozero lake)]. Gonik MM; Bobyrev AE; Burmenskiĭ VA; Kriksunov EA; Li BL; Malchow H; Medvinskiĭ AB; Sterligova OP Biofizika; 2007; 52(4):760-8. PubMed ID: 17907422 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]