These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 17521801)

  • 21. Monodisperse versus Polydisperse Ultrasound Contrast Agents: In Vivo Sensitivity and safety in Rat and Pig.
    Helbert A; Gaud E; Segers T; Botteron C; Frinking P; Jeannot V
    Ultrasound Med Biol; 2020 Dec; 46(12):3339-3352. PubMed ID: 33008649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating the subharmonic response of individual phospholipid encapsulated microbubbles at high frequencies: a comparative study of five agents.
    Helfield BL; Cherin E; Foster FS; Goertz DE
    Ultrasound Med Biol; 2012 May; 38(5):846-63. PubMed ID: 22402024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasound-induced gas release from contrast agent microbubbles.
    Postema M; Bouakaz A; Versluis M; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):1035-41. PubMed ID: 16118985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acoustic Behavior of a Reactivated, Commercially Available Ultrasound Contrast Agent.
    Choudhury SA; Xie F; Dayton PA; Porter TR
    J Am Soc Echocardiogr; 2017 Feb; 30(2):189-197. PubMed ID: 27939052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of vaporized submicron perfluorocarbon droplets as an ultrasound contrast agent.
    Reznik N; Williams R; Burns PN
    Ultrasound Med Biol; 2011 Aug; 37(8):1271-9. PubMed ID: 21723449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pressure-dependent attenuation with microbubbles at low mechanical index.
    Tang MX; Eckersley RJ; Noble JA
    Ultrasound Med Biol; 2005 Mar; 31(3):377-84. PubMed ID: 15749561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subharmonic response of encapsulated microbubbles: conditions for existence and amplification.
    Kimmel E; Krasovitski B; Hoogi A; Razansky D; Adam D
    Ultrasound Med Biol; 2007 Nov; 33(11):1767-76. PubMed ID: 17720301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blood-brain barrier (BBB) disruption using a diagnostic ultrasound scanner and Definity in Mice.
    Bing KF; Howles GP; Qi Y; Palmeri ML; Nightingale KR
    Ultrasound Med Biol; 2009 Aug; 35(8):1298-308. PubMed ID: 19545939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):263-8. PubMed ID: 18977009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasound contrast agents: basic principles.
    Calliada F; Campani R; Bottinelli O; Bozzini A; Sommaruga MG
    Eur J Radiol; 1998 May; 27 Suppl 2():S157-60. PubMed ID: 9652516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absolute measurement of ultrasonic backscatter from single microbubbles.
    Sboros V; Pye SD; Macdonald CA; Gomatam J; Moran CM; McDicken WN
    Ultrasound Med Biol; 2005 Aug; 31(8):1063-72. PubMed ID: 16085097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of the attenuation coefficient for monodisperse populations of ultrasound contrast agents.
    Gong Y; Cabodi M; Porter TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1964-6. PubMed ID: 19964023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pressure-dependent attenuation and scattering of phospholipid-coated microbubbles at low acoustic pressures.
    Emmer M; Vos HJ; Goertz DE; van Wamel A; Versluis M; de Jong N
    Ultrasound Med Biol; 2009 Jan; 35(1):102-11. PubMed ID: 18829153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frequency and pressure dependent attenuation and scattering by microbubbles.
    Tang MX; Eckersley RJ
    Ultrasound Med Biol; 2007 Jan; 33(1):164-8. PubMed ID: 17189060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual-frequency acoustic droplet vaporization detection for medical imaging.
    Arena CB; Novell A; Sheeran PS; Puett C; Moyer LC; Dayton PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Sep; 62(9):1623-33. PubMed ID: 26415125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic characterization of contrast-to-tissue ratio and axial resolution for dual-frequency contrast-specific acoustic angiography imaging.
    Lindsey BD; Rojas JD; Martin KH; Shelton SE; Dayton PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1668-87. PubMed ID: 25265176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison between maximum radial expansion of ultrasound contrast agents and experimental postexcitation signal results.
    King DA; O'Brien WD
    J Acoust Soc Am; 2011 Jan; 129(1):114-21. PubMed ID: 21302993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of temperature, needle gauge and injection rate on the size distribution, concentration and acoustic responses of ultrasound contrast agents at high frequency.
    Sun C; Panagakou I; Sboros V; Butler MB; Kenwright D; Thomson AJ; Moran CM
    Ultrasonics; 2016 Aug; 70():84-91. PubMed ID: 27140502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual-high-frequency ultrasound excitation on microbubble destruction volume.
    Shen CC; Su SY; Cheng CH; Yeh CK
    Ultrasonics; 2010 Jun; 50(7):698-703. PubMed ID: 20193957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-speed optical observations of contrast agent destruction.
    Bouakaz A; Versluis M; de Jong N
    Ultrasound Med Biol; 2005 Mar; 31(3):391-9. PubMed ID: 15749563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.