These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 17521801)

  • 41. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening.
    Wang S; Samiotaki G; Olumolade O; Feshitan JA; Konofagou EE
    Ultrasound Med Biol; 2014 Jan; 40(1):130-7. PubMed ID: 24239362
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microfoam formation in a capillary.
    Kotopoulis S; Postema M
    Ultrasonics; 2010 Feb; 50(2):260-8. PubMed ID: 19875143
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acoustic Characterization and Enhanced Ultrasound Imaging of Long-Circulating Lipid-Coated Microbubbles.
    Li H; Yang Y; Zhang M; Yin L; Tu J; Guo X; Zhang D
    J Ultrasound Med; 2018 May; 37(5):1243-1256. PubMed ID: 29127707
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acoustic characterization of single ultrasound contrast agent microbubbles.
    Sijl J; Gaud E; Frinking PJ; Arditi M; de Jong N; Lohse D; Versluis M
    J Acoust Soc Am; 2008 Dec; 124(6):4091-7. PubMed ID: 19206831
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of Bubble Concentration on the in Vitro and in Vivo Performance of Highly Stable Lipid Shell-Stabilized Micro- and Nanoscale Ultrasound Contrast Agents.
    Abenojar EC; Nittayacharn P; de Leon AC; Perera R; Wang Y; Bederman I; Exner AA
    Langmuir; 2019 Aug; 35(31):10192-10202. PubMed ID: 30913884
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shell properties and concentration stability of acoustofluidic delivery agents.
    Alsadiq H; Tupally K; Vogel R; Kokil G; Parekh HS; Veidt M
    Phys Eng Sci Med; 2021 Mar; 44(1):79-91. PubMed ID: 33398637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acoustic bubble sorting for ultrasound contrast agent enrichment.
    Segers T; Versluis M
    Lab Chip; 2014 May; 14(10):1705-14. PubMed ID: 24651248
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Growth and dissolution of an encapsulated contrast microbubble: effects of encapsulation permeability.
    Sarkar K; Katiyar A; Jain P
    Ultrasound Med Biol; 2009 Aug; 35(8):1385-96. PubMed ID: 19616160
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonlinear emission from individual bound microbubbles at high frequencies.
    Sprague MR; Chérin E; Goertz DE; Foster FS
    Ultrasound Med Biol; 2010 Feb; 36(2):313-24. PubMed ID: 20018429
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets.
    Reznik N; Shpak O; Gelderblom EC; Williams R; de Jong N; Versluis M; Burns PN
    Ultrasonics; 2013 Sep; 53(7):1368-76. PubMed ID: 23652262
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of laboratory Ultrasound Contrast Agents.
    Park J; Park D; Shin U; Moon S; Kim C; Kim HS; Park H; Choi K; Jung B; Oh J; Seo J
    Molecules; 2013 Oct; 18(10):13078-95. PubMed ID: 24152677
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Comparison of the Sensitivity of Contrast-Specific Imaging Modes on Clinical and Preclinical Ultrasound Scanners.
    Moran CM; Arthur C; Quaia E
    Tomography; 2022 Sep; 8(5):2285-2297. PubMed ID: 36136887
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An in vitro study of a microbubble contrast agent using a clinical ultrasound imaging system.
    Sboros V; Moran CM; Pye SD; McDicken WN
    Phys Med Biol; 2004 Jan; 49(1):159-73. PubMed ID: 14971779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Uniform scattering and attenuation of acoustically sorted ultrasound contrast agents: Modeling and experiments.
    Segers T; de Jong N; Versluis M
    J Acoust Soc Am; 2016 Oct; 140(4):2506. PubMed ID: 27794344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power.
    Eckersley RJ; Chin CT; Burns PN
    Ultrasound Med Biol; 2005 Feb; 31(2):213-9. PubMed ID: 15708461
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Difference frequency and its harmonic emitted by microbubbles under dual frequency excitation.
    Chen S; Kinnick R; Greenleaf JF; Fatemi M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e123-6. PubMed ID: 16930662
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice.
    Sirsi S; Feshitan J; Kwan J; Homma S; Borden M
    Ultrasound Med Biol; 2010 Jun; 36(6):935-48. PubMed ID: 20447755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.