These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1123 related articles for article (PubMed ID: 17522344)
1. Iptakalim, a vascular ATP-sensitive potassium (KATP) channel opener, closes rat pancreatic beta-cell KATP channels and increases insulin release. Misaki N; Mao X; Lin YF; Suga S; Li GH; Liu Q; Chang Y; Wang H; Wakui M; Wu J J Pharmacol Exp Ther; 2007 Aug; 322(2):871-8. PubMed ID: 17522344 [TBL] [Abstract][Full Text] [Related]
2. Targeting hypertension with a new adenosine triphosphate-sensitive potassium channel opener iptakalim. Pan Z; Huang J; Cui W; Long C; Zhang Y; Wang H J Cardiovasc Pharmacol; 2010 Sep; 56(3):215-28. PubMed ID: 20410832 [TBL] [Abstract][Full Text] [Related]
3. Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation. Lin YF; Chai Y Neuroscience; 2008 Mar; 152(2):371-80. PubMed ID: 18280666 [TBL] [Abstract][Full Text] [Related]
4. Functional effects of mutations at F35 in the NH2-terminus of Kir6.2 (KCNJ11), causing neonatal diabetes, and response to sulfonylurea therapy. Proks P; Girard C; Baevre H; Njølstad PR; Ashcroft FM Diabetes; 2006 Jun; 55(6):1731-7. PubMed ID: 16731836 [TBL] [Abstract][Full Text] [Related]
5. Iptakalim modulates ATP-sensitive K(+) channels in dopamine neurons from rat substantia nigra pars compacta. Wu J; Hu J; Chen YP; Takeo T; Suga S; Dechon J; Liu Q; Yang KC; St John PA; Hu G; Wang H; Wakui M J Pharmacol Exp Ther; 2006 Oct; 319(1):155-64. PubMed ID: 16837559 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of ATP-sensitive K+ channels by taurine through a benzamido-binding site on sulfonylurea receptor 1. Park EJ; Bae JH; Kim SY; Lim JG; Baek WK; Kwon TK; Suh SI; Park JW; Lee IK; Ashcroft FM; Song DK Biochem Pharmacol; 2004 Mar; 67(6):1089-96. PubMed ID: 15006545 [TBL] [Abstract][Full Text] [Related]
7. Diabetes and hypoglycaemia in young children and mutations in the Kir6.2 subunit of the potassium channel: therapeutic consequences. Flechtner I; de Lonlay P; Polak M Diabetes Metab; 2006 Dec; 32(6):569-80. PubMed ID: 17296510 [TBL] [Abstract][Full Text] [Related]
8. Inhibitory modulation of ATP-sensitive potassium channels by gallate-ester moiety of (-)-epigallocatechin-3-gallate. Baek WK; Jang BC; Lim JH; Kwon TK; Lee HY; Cho CH; Kim DK; Shin DH; Park JG; Lim JG; Bae JH; Bae JH; Yoo SK; Park WK; Song DK Biochem Pharmacol; 2005 Nov; 70(11):1560-7. PubMed ID: 16216226 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence microscopy studies with a fluorescent glibenclamide derivative, a high-affinity blocker of pancreatic beta-cell ATP-sensitive K+ currents. Zünkler BJ; Wos-Maganga M; Panten U Biochem Pharmacol; 2004 Apr; 67(8):1437-44. PubMed ID: 15041461 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanisms of the inhibitory effects of clonidine on vascular adenosine triphosphate-sensitive potassium channels. Kawahito S; Kawano T; Kitahata H; Oto J; Takahashi A; Takaishi K; Harada N; Nakagawa T; Kinoshita H; Azma T; Nakaya Y; Oshita S Anesth Analg; 2011 Dec; 113(6):1374-80. PubMed ID: 22003223 [TBL] [Abstract][Full Text] [Related]
11. Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels. Zhu HL; Luo WQ; Wang H Neuroscience; 2008 Dec; 157(4):884-94. PubMed ID: 18951957 [TBL] [Abstract][Full Text] [Related]
12. [3T3-L1 adipocytes reduces Kir6.2 channel expression in MIN6 insulin-secreting cells in vitro]. Zhao YF; Zhu YL; Chen C Sheng Li Xue Bao; 2004 Apr; 56(2):253-7. PubMed ID: 15127139 [TBL] [Abstract][Full Text] [Related]
13. INGAP-PP up-regulates the expression of genes and proteins related to K+ ATP channels and ameliorates Ca2+ handling in cultured adult rat islets. Silva KE; Barbosa HC; Rafacho A; Bosqueiro JR; Stoppiglia LF; Carneiro EM; Borelli MI; Del Zotto H; Gagliardino JJ; Boschero AC Regul Pept; 2008 Jun; 148(1-3):39-45. PubMed ID: 18378016 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity of Kir6.2-SUR1 currents, in the absence and presence of sodium azide, to the K(ATP) channel inhibitors, ciclazindol and englitazone. McKay NG; Kinsella JM; Campbell CM; Ashford ML Br J Pharmacol; 2000 Jun; 130(4):857-66. PubMed ID: 10864893 [TBL] [Abstract][Full Text] [Related]
15. Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects. Shimomura K; Girard CA; Proks P; Nazim J; Lippiat JD; Cerutti F; Lorini R; Ellard S; Hattersley AT; Barbetti F; Ashcroft FM Diabetes; 2006 Jun; 55(6):1705-12. PubMed ID: 16731833 [TBL] [Abstract][Full Text] [Related]
16. Identification of two types of ATP-sensitive K+ channels in rat ventricular myocytes. Wu SN; Wu AZ; Sung RJ Life Sci; 2007 Jan; 80(4):378-87. PubMed ID: 17097686 [TBL] [Abstract][Full Text] [Related]
17. Iptakalim inhibited endothelin-1-induced proliferation of human pulmonary arterial smooth muscle cells through the activation of K(ATP) channel. Zhu Y; Zhang S; Xie W; Li Q; Zhou Y; Wang H Vascul Pharmacol; 2008; 48(2-3):92-9. PubMed ID: 18276195 [TBL] [Abstract][Full Text] [Related]
18. Iptakalim inhibits nicotinic acetylcholine receptor-mediated currents in dopamine neurons acutely dissociated from rat substantia nigra pars compacta. Hu J; DeChon J; Yan KC; Liu Q; Hu G; Wu J Neurosci Lett; 2006 Jul; 403(1-2):57-62. PubMed ID: 16730119 [TBL] [Abstract][Full Text] [Related]
19. Uncoupling by (--)-epigallocatechin-3-gallate of ATP-sensitive potassium channels from phosphatidylinositol polyphosphates and ATP. Jin JY; Park SH; Bae JH; Cho HC; Lim JG; Park WS; Han J; Lee JH; Song DK Pharmacol Res; 2007 Sep; 56(3):237-47. PubMed ID: 17656102 [TBL] [Abstract][Full Text] [Related]
20. Different molecular sites of action for the KATP channel inhibitors, PNU-99963 and PNU-37883A. Cui Y; Tinker A; Clapp LH Br J Pharmacol; 2003 May; 139(1):122-8. PubMed ID: 12746230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]