BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 1752274)

  • 1. Stone fragility--measurement of stone mineral content by dual photon absorptiometry.
    Sakamoto W; Kishimoto T; Takegaki Y; Sugimoto T; Wada S; Yamamoto K; Maekawa M; Ochi H
    Eur Urol; 1991; 20(2):150-3. PubMed ID: 1752274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition and clinically determined hardness of urinary tract stones.
    Ringdén I; Tiselius HG
    Scand J Urol Nephrol; 2007; 41(4):316-23. PubMed ID: 17763224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrum of stone composition: structural analysis of 1050 upper urinary tract calculi from northern India.
    Ansari MS; Gupta NP; Hemal AK; Dogra PN; Seth A; Aron M; Singh TP
    Int J Urol; 2005 Jan; 12(1):12-6. PubMed ID: 15661049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of in vitro stone fragmentation by extracorporeal, electrohydraulic, and pulsed-dye laser lithotripsy.
    Wu TT; Hsu TH; Chen MT; Chang LS
    J Endourol; 1993 Oct; 7(5):391-3. PubMed ID: 8298621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of internal stone structure upon the fracture behaviour of urinary calculi.
    Pittomvils G; Vandeursen H; Wevers M; Lafaut JP; De Ridder D; De Meester P; Boving R; Baert L
    Ultrasound Med Biol; 1994; 20(8):803-10. PubMed ID: 7863569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro analysis of urinary calculi: type differentiation using computed tomography and bone densitometry.
    Herremans D; Vandeursen H; Pittomvils G; Boving R; Oyen R; Geusens P; Baert L
    Br J Urol; 1993 Nov; 72(5 Pt 1):544-8. PubMed ID: 10071533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: determination of optimal parameters for in vitro stone fragmentation.
    Sheir KZ; Zabihi N; Lee D; Teichman JM; Rehman J; Sundaram CP; Heimbach D; Hesse A; Delvecchio F; Zhong P; Preminger GM; Clayman RV
    J Urol; 2003 Dec; 170(6 Pt 1):2190-4. PubMed ID: 14634376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stone fragility: its therapeutic implications in shock wave lithotripsy of upper urinary tract stones.
    Ansari MS; Gupta NP; Seth A; Hemal AK; Dogra PN; Singh TP
    Int Urol Nephrol; 2003; 35(3):387-92. PubMed ID: 15160546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multidetector computed tomography: role in determination of urinary stones composition and disintegration with extracorporeal shock wave lithotripsy--an in vitro study.
    el-Assmy A; Abou-el-Ghar ME; el-Nahas AR; Refaie HF; Sheir KZ
    Urology; 2011 Feb; 77(2):286-90. PubMed ID: 20719366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stone fragility--a new therapeutic distinction.
    Dretler SP
    J Urol; 1988 May; 139(5):1124-7. PubMed ID: 3361657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology of urinary stone particles resulting from ESWL treatment.
    Khan SR; Hackett RL; Finlayson B
    J Urol; 1986 Dec; 136(6):1367-72. PubMed ID: 3773122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of stone fragility in vitro and in vivo with piezoelectric shock waves using the EDAP LT-01.
    Wang YH; Grenabo L; Hedelin H; Pettersson S; Wikholm G; Zachrisson BF
    J Urol; 1993 Apr; 149(4):699-702. PubMed ID: 8384271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of chemical composition of urinary calculi by conventional radiography.
    Oehlschläger S; Hakenberg OW; Froehner M; Manseck A; Wirth MP
    J Endourol; 2003 Dec; 17(10):841-5. PubMed ID: 14744345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensile, flexural and compressive strength studies on natural and artificial phosphate urinary stones.
    Mohamed Ali A; Arunai Nambi Raj N
    Urol Res; 2008 Dec; 36(6):289-95. PubMed ID: 18987852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition of kidney stone fragments obtained after extracorporeal shock wave lithotripsy.
    Ribeiro da Silva SF; Leite da Silva S; De Francesco Daher E; de Holanda Campos H; Bruno da Silva CA
    Clin Chem Lab Med; 2010 Mar; 48(3):403-4. PubMed ID: 20113249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracorporeal shock wave lithotripsy: the use of chemical treatments for improved stone comminution.
    Akers SR; Cocks FH; Weinerth JL
    J Urol; 1987 Nov; 138(5):1295-300. PubMed ID: 3669190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [CT SCAN as a predictor of composition and fragility of urinary lithiasis treated with extracorporeal shock wave lithotripsy in vitro].
    García Marchiñena P; Billordo Peres N; Liyo J; Ocantos J; Gonzalez M; Jurado A; Daels F
    Arch Esp Urol; 2009 Apr; 62(3):215-22; discussion 222. PubMed ID: 19542594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo evaluation of the chemical composition of urinary stones using dual-energy CT.
    Manglaviti G; Tresoldi S; Guerrer CS; Di Leo G; Montanari E; Sardanelli F; Cornalba G
    AJR Am J Roentgenol; 2011 Jul; 197(1):W76-83. PubMed ID: 21700999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoride concentrations in a collection of urinary calculi.
    Wandt MA; Rodgers AL
    J Urol; 1987 Sep; 138(3):644-7. PubMed ID: 3625873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of calcium oxalate to calcium phosphate with recurrent stone episodes.
    Mandel N; Mandel I; Fryjoff K; Rejniak T; Mandel G
    J Urol; 2003 Jun; 169(6):2026-9. PubMed ID: 12771710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.