BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 17522826)

  • 1. Genetic and ecological consequences of transgene flow to the wild flora.
    Felber F; Kozlowski G; Arrigo N; Guadagnuolo R
    Adv Biochem Eng Biotechnol; 2007; 107():173-205. PubMed ID: 17522826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating genetic containment strategies for transgenic plants.
    Lee D; Natesan E
    Trends Biotechnol; 2006 Mar; 24(3):109-14. PubMed ID: 16460821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgene introgression from genetically modified crops to their wild relatives.
    Stewart CN; Halfhill MD; Warwick SI
    Nat Rev Genet; 2003 Oct; 4(10):806-17. PubMed ID: 14526376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgene escape: what potential for crop-wild hybridization?
    Armstrong TT; Fitzjohn RG; Newstrom LE; Wilton AD; Lee WG
    Mol Ecol; 2005 Jun; 14(7):2111-32. PubMed ID: 15910331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant fitness assessment for wild relatives of insect resistant crops.
    Letourneau DK; Hagen JA
    Environ Biosafety Res; 2009; 8(1):45-55. PubMed ID: 19419653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling pollen-mediated gene flow in rice: risk assessment and management of transgene escape.
    Rong J; Song Z; de Jong TJ; Zhang X; Sun S; Xu X; Xia H; Liu B; Lu BR
    Plant Biotechnol J; 2010 May; 8(4):452-64. PubMed ID: 20132516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting (trans)gene flow to landraces in centers of crop origin: lessons from the case of maize in Mexico.
    Cleveland DA; Soleri D; Cuevas FA; Crossa J; Gepts P
    Environ Biosafety Res; 2005; 4(4):197-208; discussion 209-15. PubMed ID: 16827547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O. rufipogon) and barnyard grass (Echinochloa crusgalli).
    Wang F; Yuan QH; Shi L; Qian Q; Liu WG; Kuang BG; Zeng DL; Liao YL; Cao B; Jia SR
    Plant Biotechnol J; 2006 Nov; 4(6):667-76. PubMed ID: 17309736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene flow in Prunus species in the context of novel trait risk assessment.
    Cici SZ; Van Acker RC
    Environ Biosafety Res; 2010; 9(2):75-85. PubMed ID: 21288463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L) as a case study.
    Légère A
    Pest Manag Sci; 2005 Mar; 61(3):292-300. PubMed ID: 15593291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene flow, invasiveness, and ecological impact of genetically modified crops.
    Warwick SI; Beckie HJ; Hall LM
    Ann N Y Acad Sci; 2009 Jun; 1168():72-99. PubMed ID: 19566704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population.
    Warwick SI; Légère A; Simard MJ; James T
    Mol Ecol; 2008 Mar; 17(5):1387-95. PubMed ID: 17971090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of hybrids between weedy rice and insect-resistant transgenic rice under field experiments: implication for environmental biosafety assessment.
    Cao QJ; Xia H; Yang X; Lu BR
    J Integr Plant Biol; 2009 Dec; 51(12):1138-48. PubMed ID: 20021561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences.
    Lu BR; Yang C
    Biotechnol Adv; 2009; 27(6):1083-1091. PubMed ID: 19463932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-scale geographical structure of genetic diversity in inland wild beet populations.
    Arnaud JF; Fénart S; Godé C; Deledicque S; Touzet P; Cuguen J
    Mol Ecol; 2009 Aug; 18(15):3201-15. PubMed ID: 19627487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower.
    Mercer KL; Andow DA; Wyse DL; Shaw RG
    Ecol Lett; 2007 May; 10(5):383-93. PubMed ID: 17498137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats.
    Reichman JR; Watrud LS; Lee EH; Burdick CA; Bollman MA; Storm MJ; King GA; Mallory-Smith C
    Mol Ecol; 2006 Nov; 15(13):4243-55. PubMed ID: 17054516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long distance pollen-mediated gene flow at a landscape level: the weed beet as a case study.
    Fénart S; Austerlitz F; Cuguen J; Arnaud JF
    Mol Ecol; 2007 Sep; 16(18):3801-13. PubMed ID: 17850547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental implications of gene flow from sugar beet to wild beet--current status and future research needs.
    Bartsch D; Cuguen J; Biancardi E; Sweet J
    Environ Biosafety Res; 2003; 2(2):105-15. PubMed ID: 15612276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence evidence for sporadic intergeneric DNA introgression from wheat into a wild Aegilops species.
    Weissmann S; Feldman M; Gressel J
    Mol Biol Evol; 2005 Oct; 22(10):2055-62. PubMed ID: 15972848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.