These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17522826)

  • 61. Reduced weed seed shattering by silencing a cultivated rice gene: strategic mitigation for escaped transgenes.
    Yan H; Li L; Liu P; Jiang X; Wang L; Fang J; Lin Z; Wang F; Su J; Lu BR
    Transgenic Res; 2017 Aug; 26(4):465-475. PubMed ID: 28526984
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genes invading new populations: a risk assessment perspective.
    Hails RS; Morley K
    Trends Ecol Evol; 2005 May; 20(5):245-52. PubMed ID: 16701376
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Gene flow from herbicide-resistant crops: it's not just for transgenes.
    Mallory-Smith CA; Sanchez Olguin E
    J Agric Food Chem; 2011 Jun; 59(11):5813-8. PubMed ID: 21058724
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Assessing environmental risks of transgenic plants.
    Andow DA; Zwahlen C
    Ecol Lett; 2006 Feb; 9(2):196-214. PubMed ID: 16958885
    [TBL] [Abstract][Full Text] [Related]  

  • 65. U.S. EPA regulation of plant-incorporated protectants: assessment of impacts of gene flow from pest-resistant plants.
    Wozniak CA; Martinez JC
    J Agric Food Chem; 2011 Jun; 59(11):5859-64. PubMed ID: 21080671
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds.
    Gressel J; Valverde BE
    Pest Manag Sci; 2009 Jul; 65(7):723-31. PubMed ID: 19367567
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Bayesian analysis of gene flow from crops to their wild relatives: cultivated (Lactuca sativa L.) and prickly lettuce (L. serriola L.) and the recent expansion of L. serriola in Europe.
    Uwimana B; D'Andrea L; Felber F; Hooftman DA; Den Nijs HC; Smulders MJ; Visser RG; Van De Wiel CC
    Mol Ecol; 2012 Jun; 21(11):2640-54. PubMed ID: 22512715
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Genetically modified myths and realities.
    Parrott W
    N Biotechnol; 2010 Nov; 27(5):545-51. PubMed ID: 20609417
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Polluting gene flow from crops: radishes gone wild.
    Chapman MA; Burke JM
    Heredity (Edinb); 2006 Dec; 97(6):379-80. PubMed ID: 17006535
    [No Abstract]   [Full Text] [Related]  

  • 70. Survival and flowering of hybrids between cultivated and wild carrots (Daucus carota) in Danish grasslands.
    Hauser TP; Shim SI
    Environ Biosafety Res; 2007; 6(4):237-47. PubMed ID: 18289499
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Wheat alleles introgress into selfing wild relatives: empirical estimates from approximate Bayesian computation in Aegilops triuncialis.
    Pajkovic M; Lappe S; Barman R; Parisod C; Neuenschwander S; Goudet J; Alvarez N; Guadagnuolo R; Felber F; Arrigo N
    Mol Ecol; 2014 Oct; 23(20):5089-101. PubMed ID: 25223217
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A model to predict the frequency of integration of fitness-related QTLs from cultivated to wild soybean.
    Kitamoto N; Kaga A; Kuroda Y; Ohsawa R
    Transgenic Res; 2012 Feb; 21(1):131-8. PubMed ID: 21544624
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Low level of pollen-mediated gene flow from cultivated to wild grapevine: consequences for the evolution of the endangered subspecies Vitis vinifera L. subsp. silvestris.
    Di Vecchi-Staraz M; Laucou V; Bruno G; Lacombe T; Gerber S; Bourse T; Boselli M; This P
    J Hered; 2009; 100(1):66-75. PubMed ID: 18927474
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea.
    Liu YB; Darmency H; Stewart CN; Wei W; Tang ZX; Ma KP
    Transgenic Res; 2015 Jun; 24(3):537-47. PubMed ID: 25487040
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Derivation and interpretation of hazard quotients to assess ecological risks from the cultivation of insect-resistant transgenic crops.
    Raybould A; Caron-Lormier G; Bohan DA
    J Agric Food Chem; 2011 Jun; 59(11):5877-85. PubMed ID: 21247173
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ongoing ecological and evolutionary consequences by the presence of transgenes in a wild cotton population.
    Vázquez-Barrios V; Boege K; Sosa-Fuentes TG; Rojas P; Wegier A
    Sci Rep; 2021 Jan; 11(1):1959. PubMed ID: 33479296
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Selection on domestication traits and quantitative trait loci in crop-wild sunflower hybrids.
    Baack EJ; Sapir Y; Chapman MA; Burke JM; Rieseberg LH
    Mol Ecol; 2008 Jan; 17(2):666-77. PubMed ID: 18179437
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives.
    Gepts P; Papa R
    Environ Biosafety Res; 2003; 2(2):89-103. PubMed ID: 15612275
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rice transgene flow: its patterns, model and risk management.
    Jia S; Yuan Q; Pei X; Wang F; Hu N; Yao K; Wang Z
    Plant Biotechnol J; 2014 Dec; 12(9):1259-70. PubMed ID: 25431202
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Transgene escape and transplastomics.
    Chamberlain D; Stewart CN
    Nat Biotechnol; 1999 Apr; 17(4):330-1. PubMed ID: 10207875
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.