These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17522835)

  • 1. Leveraging the rice genome sequence for monocot comparative and translational genomics.
    Lohithaswa HC; Feltus FA; Singh HP; Bacon CD; Bailey CD; Paterson AH
    Theor Appl Genet; 2007 Jul; 115(2):237-43. PubMed ID: 17522835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops.
    Feltus FA; Singh HP; Lohithaswa HC; Schulze SR; Silva TD; Paterson AH
    Plant Physiol; 2006 Apr; 140(4):1183-91. PubMed ID: 16607031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the Musa genome: syntenic relationships to rice and between Musa species.
    Lescot M; Piffanelli P; Ciampi AY; Ruiz M; Blanc G; Leebens-Mack J; da Silva FR; Santos CM; D'Hont A; Garsmeur O; Vilarinhos AD; Kanamori H; Matsumoto T; Ronning CM; Cheung F; Haas BJ; Althoff R; Arbogast T; Hine E; Pappas GJ; Sasaki T; Souza MT; Miller RN; Glaszmann JC; Town CD
    BMC Genomics; 2008 Jan; 9():58. PubMed ID: 18234080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative sequence and genetic analyses of asparagus BACs reveal no microsynteny with onion or rice.
    Jakse J; Telgmann A; Jung C; Khar A; Melgar S; Cheung F; Town CD; Havey MJ
    Theor Appl Genet; 2006 Dec; 114(1):31-9. PubMed ID: 17016688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A BAC end view of the Musa acuminata genome.
    Cheung F; Town CD
    BMC Plant Biol; 2007 Jun; 7():29. PubMed ID: 17562019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley.
    La Rota M; Kantety RV; Yu JK; Sorrells ME
    BMC Genomics; 2005 Feb; 6():23. PubMed ID: 15720707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and application of genomic resources for comparative and translational genomics in legumes through leveraging genomic sequence of
    Bi R; Lohithaswa HC; Lokesh S; Sunil Kumar KR; Shilpa HB; Jyothi K; Vinutha K; Hittalmani S
    J Genet; 2018 Oct; 97(5):e117-e137. PubMed ID: 30574877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general pipeline for the development of anchor markers for comparative genomics in plants.
    Fredslund J; Madsen LH; Hougaard BK; Nielsen AM; Bertioli D; Sandal N; Stougaard J; Schauser L
    BMC Genomics; 2006 Aug; 7():207. PubMed ID: 16907970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity.
    Martin WJ; McCallum J; Shigyo M; Jakse J; Kuhl JC; Yamane N; Pither-Joyce M; Gokce AF; Sink KC; Town CD; Havey MJ
    Mol Genet Genomics; 2005 Oct; 274(3):197-204. PubMed ID: 16025250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes.
    Ishikawa G; Yonemaru J; Saito M; Nakamura T
    BMC Genomics; 2007 May; 8():135. PubMed ID: 17535443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mining of EST-SSR markers of Musa and their transferability studies among the members of order the Zingiberales.
    Backiyarani S; Uma S; Varatharj P; Saraswathi MS
    Appl Biochem Biotechnol; 2013 Jan; 169(1):228-38. PubMed ID: 23179283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution.
    Salse J; Bolot S; Throude M; Jouffe V; Piegu B; Quraishi UM; Calcagno T; Cooke R; Delseny M; Feuillet C
    Plant Cell; 2008 Jan; 20(1):11-24. PubMed ID: 18178768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative mapping of DNA sequences in rye (Secale cereale L.) in relation to the rice genome.
    Hackauf B; Rudd S; van der Voort JR; Miedaner T; Wehling P
    Theor Appl Genet; 2009 Jan; 118(2):371-84. PubMed ID: 18953524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics.
    Zhao W; Wang J; He X; Huang X; Jiao Y; Dai M; Wei S; Fu J; Chen Y; Ren X; Zhang Y; Ni P; Zhang J; Li S; Wang J; Wong GK; Zhao H; Yu J; Yang H; Wang J
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D377-82. PubMed ID: 14681438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid diversification of five Oryza AA genomes associated with rice adaptation.
    Zhang QJ; Zhu T; Xia EH; Shi C; Liu YL; Zhang Y; Liu Y; Jiang WK; Zhao YJ; Mao SY; Zhang LP; Huang H; Jiao JY; Xu PZ; Yao QY; Zeng FC; Yang LL; Gao J; Tao DY; Wang YJ; Bennetzen JL; Gao LZ
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4954-62. PubMed ID: 25368197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant Gene and Alternatively Spliced Variant Annotator. A plant genome annotation pipeline for rice gene and alternatively spliced variant identification with cross-species expressed sequence tag conservation from seven plant species.
    Chen FC; Wang SS; Chaw SM; Huang YT; Chuang TJ
    Plant Physiol; 2007 Mar; 143(3):1086-95. PubMed ID: 17220363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.
    D'Hont A; Denoeud F; Aury JM; Baurens FC; Carreel F; Garsmeur O; Noel B; Bocs S; Droc G; Rouard M; Da Silva C; Jabbari K; Cardi C; Poulain J; Souquet M; Labadie K; Jourda C; Lengellé J; Rodier-Goud M; Alberti A; Bernard M; Correa M; Ayyampalayam S; Mckain MR; Leebens-Mack J; Burgess D; Freeling M; Mbéguié-A-Mbéguié D; Chabannes M; Wicker T; Panaud O; Barbosa J; Hribova E; Heslop-Harrison P; Habas R; Rivallan R; Francois P; Poiron C; Kilian A; Burthia D; Jenny C; Bakry F; Brown S; Guignon V; Kema G; Dita M; Waalwijk C; Joseph S; Dievart A; Jaillon O; Leclercq J; Argout X; Lyons E; Almeida A; Jeridi M; Dolezel J; Roux N; Risterucci AM; Weissenbach J; Ruiz M; Glaszmann JC; Quétier F; Yahiaoui N; Wincker P
    Nature; 2012 Aug; 488(7410):213-7. PubMed ID: 22801500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted analysis of orthologous phytochrome A regions of the sorghum, maize, and rice genomes using comparative gene-island sequencing.
    Morishige DT; Childs KL; Moore LD; Mullet JE
    Plant Physiol; 2002 Dec; 130(4):1614-25. PubMed ID: 12481045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of SNPs in important legumes through comparative genome analysis and conversion of SNPs into PCR-based markers.
    Shilpa HB; Lohithaswa HC
    J Genet; 2021; 100():. PubMed ID: 34706999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice.
    Badoni S; Das S; Sayal YK; Gopalakrishnan S; Singh AK; Rao AR; Agarwal P; Parida SK; Tyagi AK
    Sci Rep; 2016 Apr; 6():23765. PubMed ID: 27032371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.