These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 17522855)

  • 1. A simple genetic algorithm for the optimization of multidomain protein homology models driven by NMR residual dipolar coupling and small angle X-ray scattering data.
    Mareuil F; Sizun C; Perez J; Schoenauer M; Lallemand JY; Bontems F
    Eur Biophys J; 2007 Dec; 37(1):95-104. PubMed ID: 17522855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An algebraic geometry approach to protein structure determination from NMR data.
    Wang L; Mettu RR; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():235-46. PubMed ID: 16447981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.
    Kikhney AG; Svergun DI
    FEBS Lett; 2015 Sep; 589(19 Pt A):2570-7. PubMed ID: 26320411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints.
    Gabel F; Simon B; Nilges M; Petoukhov M; Svergun D; Sattler M
    J Biomol NMR; 2008 Aug; 41(4):199-208. PubMed ID: 18670889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput 3D structural homology detection via NMR resonance assignment.
    Langmead CJ; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():278-89. PubMed ID: 16448021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugation of NMR and SAXS for flexible and multidomain protein structure determination: From sample preparation to model refinement.
    Rodríguez-Zamora P
    Prog Biophys Mol Biol; 2020 Jan; 150():140-144. PubMed ID: 31445067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of a flexible two-domain protein in solution using small angle X-ray scattering and NMR data.
    Lemak A; Wu B; Yee A; Houliston S; Lee HW; Gutmanas A; Fang X; Garcia M; Semesi A; Wang YX; Prestegard JH; Arrowsmith CH
    Structure; 2014 Dec; 22(12):1862-1874. PubMed ID: 25456817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Hausdorff-based NOE assignment algorithm using protein backbone determined from residual dipolar couplings and rotamer patterns.
    Zeng J; Tripathy C; Zhou P; Donald BR
    Comput Syst Bioinformatics Conf; 2008; 7():169-81. PubMed ID: 19642278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAXS study of the PIR domain from the Grb14 molecular adaptor: a natively unfolded protein with a transient structure primer?
    Moncoq K; Broutin I; Craescu CT; Vachette P; Ducruix A; Durand D
    Biophys J; 2004 Dec; 87(6):4056-64. PubMed ID: 15465854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CATHEDRAL: a fast and effective algorithm to predict folds and domain boundaries from multidomain protein structures.
    Redfern OC; Harrison A; Dallman T; Pearl FM; Orengo CA
    PLoS Comput Biol; 2007 Nov; 3(11):e232. PubMed ID: 18052539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient and accurate algorithm for assigning nuclear overhauser effect restraints using a rotamer library ensemble and residual dipolar couplings.
    Wang L; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():189-202. PubMed ID: 16447976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data.
    Grishaev A; Wu J; Trewhella J; Bax A
    J Am Chem Soc; 2005 Nov; 127(47):16621-8. PubMed ID: 16305251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconsidering complete search algorithms for protein backbone NMR assignment.
    Vitek O; Bailey-Kellogg C; Craig B; Kuliniewicz P; Vitek J
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii230-6. PubMed ID: 16204110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAXSDom: Modeling multidomain protein structures using small-angle X-ray scattering data.
    Hou J; Adhikari B; Tanner JJ; Cheng J
    Proteins; 2020 Jun; 88(6):775-787. PubMed ID: 31860156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quaternary structure built from subunits combining NMR and small-angle x-ray scattering data.
    Mattinen ML; Pääkkönen K; Ikonen T; Craven J; Drakenberg T; Serimaa R; Waltho J; Annila A
    Biophys J; 2002 Aug; 83(2):1177-83. PubMed ID: 12124297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of biostructural changes, dynamics, and interactions - Small-angle X-ray scattering to the rescue.
    Vestergaard B
    Arch Biochem Biophys; 2016 Jul; 602():69-79. PubMed ID: 26945933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving homology models for protein-ligand binding sites.
    Kauffman C; Rangwala H; Karypis G
    Comput Syst Bioinformatics Conf; 2008; 7():211-22. PubMed ID: 19642282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alignment of protein structures in the presence of domain motions.
    Mosca R; Brannetti B; Schneider TR
    BMC Bioinformatics; 2008 Aug; 9():352. PubMed ID: 18727838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast protein fold estimation from NMR-derived distance restraints.
    Angyán AF; Perczel A; Pongor S; Gáspári Z
    Bioinformatics; 2008 Jan; 24(2):272-5. PubMed ID: 18003647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-angle X-ray scattering reveals the N-terminal domain organization of cardiac myosin binding protein C.
    Jeffries CM; Whitten AE; Harris SP; Trewhella J
    J Mol Biol; 2008 Apr; 377(4):1186-99. PubMed ID: 18313073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.