BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 17523166)

  • 1. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 2: drying kinetics and particle formation from microdroplets of aqueous mannitol, trehalose, or catalase.
    Schiffter H; Lee G
    J Pharm Sci; 2007 Sep; 96(9):2284-95. PubMed ID: 17523166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trehalose and sorbitol alter the kinetic pattern of inactivation of glutamate dehydrogenase during drying in levitated microdroplets.
    Lorenzen E; Lee G
    J Pharm Sci; 2013 Dec; 102(12):4268-73. PubMed ID: 24122651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 1: evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories.
    Schiffter H; Lee G
    J Pharm Sci; 2007 Sep; 96(9):2274-83. PubMed ID: 17582811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dextran or hydroxyethyl starch in spray-freeze-dried trehalose/mannitol microparticles intended as ballistic particulate carriers for proteins.
    Rochelle C; Lee G
    J Pharm Sci; 2007 Sep; 96(9):2296-309. PubMed ID: 17274046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spray-freeze-drying for protein powder preparation: particle characterization and a case study with trypsinogen stability.
    Sonner C; Maa YF; Lee G
    J Pharm Sci; 2002 Oct; 91(10):2122-39. PubMed ID: 12226840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrhenius activation energy of damage to catalase during spray-drying.
    Schaefer J; Lee G
    Int J Pharm; 2015 Jul; 489(1-2):124-30. PubMed ID: 25940040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying.
    Pajander JP; Matero S; Sloth J; Wan F; Rantanen J; Yang M
    Pharm Res; 2015 Jun; 32(6):1993-2002. PubMed ID: 25504535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Nano Spray Dryer B-90 for pharmaceutical applications.
    Schmid K; Arpagaus C; Friess W
    Pharm Dev Technol; 2011 Aug; 16(4):287-94. PubMed ID: 20491538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Making large, flowable particles of protein or disaccharide in a mini-scale spray dryer.
    Schaefer J; Lee G
    Pharm Dev Technol; 2016 Nov; 21(7):803-811. PubMed ID: 26135384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Solvent Microdroplet Evaporation: Modeling and Measurement of Spray-Drying Kinetics with Inhalable Pharmaceutics.
    Ordoubadi M; Gregson FKA; Melhem O; Barona D; Miles REH; D'Sa D; Gracin S; Lechuga-Ballesteros D; Reid JP; Finlay WH; Vehring R
    Pharm Res; 2019 May; 36(7):100. PubMed ID: 31089892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of disaccharides alone and in combination, for the improvement of stability and particle properties of spray-freeze dried IgG.
    Daneshmand B; Faghihi H; Amini Pouya M; Aghababaie S; Darabi M; Vatanara A
    Pharm Dev Technol; 2019 Apr; 24(4):439-447. PubMed ID: 30070161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous redispersibility behavior of glycerophosphate deyhydrogenase microparticles dried in an acoustic levitator or bench-top spray dryer.
    Lorenzen E; Lee G
    Int J Pharm; 2016 Feb; 498(1-2):316-7. PubMed ID: 26707244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of operating and formulation variables on the morphology of spray-dried protein particles.
    Maa YF; Costantino HR; Nguyen PA; Hsu CC
    Pharm Dev Technol; 1997 Aug; 2(3):213-23. PubMed ID: 9552449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.
    Ingvarsson PT; Schmidt ST; Christensen D; Larsen NB; Hinrichs WL; Andersen P; Rantanen J; Nielsen HM; Yang M; Foged C
    J Control Release; 2013 May; 167(3):256-64. PubMed ID: 23415813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery.
    Schiffter H; Condliffe J; Vonhoff S
    J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S483-500. PubMed ID: 20519207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants.
    Cheow WS; Ng ML; Kho K; Hadinoto K
    Int J Pharm; 2011 Feb; 404(1-2):289-300. PubMed ID: 21093560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of spray-dried powders intended for pulmonary delivery of insulin with regard to the selection of excipients.
    Razavi Rohani SS; Abnous K; Tafaghodi M
    Int J Pharm; 2014 Apr; 465(1-2):464-78. PubMed ID: 24560646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Drying Behavior of an Aqueous Chitosan Single Droplet Using the Reaction Engineering Approach.
    Al Zaitone B; Al-Zahrani A
    AAPS PharmSciTech; 2020 Nov; 21(8):315. PubMed ID: 33165655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of process variable and physicochemical properties on the granulation mechanism of mannitol in a fluid bed top spray granulator.
    Bouffard J; Kaster M; Dumont H
    Drug Dev Ind Pharm; 2005 Oct; 31(9):923-33. PubMed ID: 16306005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of protein on mannitol polymorphic form produced during co-spray drying.
    Hulse WL; Forbes RT; Bonner MC; Getrost M
    Int J Pharm; 2009 Dec; 382(1-2):67-72. PubMed ID: 19682563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.