These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 17523166)

  • 21. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients.
    Anhorn MG; Mahler HC; Langer K
    Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying.
    Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.
    Grohganz H; Lee YY; Rantanen J; Yang M
    Int J Pharm; 2013 Apr; 447(1-2):224-30. PubMed ID: 23500620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of amino acid excipients on morphology and solid-state properties of multi-component spray-dried formulations for pulmonary delivery of biomacromolecules.
    Sou T; Kaminskas LM; Nguyen TH; Carlberg R; McIntosh MP; Morton DA
    Eur J Pharm Biopharm; 2013 Feb; 83(2):234-43. PubMed ID: 23183447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drying of a single droplet of dextrin: Drying kinetics modeling and particle formation.
    Al Zaitone B; Al-Zahrani A; Al-Shahrani S; Lamprecht A
    Int J Pharm; 2020 Jan; 574():118888. PubMed ID: 31786353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slow motion picture of protein inactivation during single-droplet drying: a study of inactivation kinetics of L-glutamate dehydrogenase dried in an acoustic levitator.
    Lorenzen E; Lee G
    J Pharm Sci; 2012 Jun; 101(6):2239-49. PubMed ID: 22447570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of cyclodextrins in antibody microparticles: potentials for antibody protection in spray drying.
    Ramezani V; Vatanara A; Seyedabadi M; Nabi Meibodi M; Fanaei H
    Drug Dev Ind Pharm; 2017 Jul; 43(7):1103-1111. PubMed ID: 28276783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Particle size and density in spray drying-effects of carbohydrate properties.
    Elversson J; Millqvist-Fureby A
    J Pharm Sci; 2005 Sep; 94(9):2049-60. PubMed ID: 16052553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Particle formation and capture during spray drying of inhalable particles.
    Mosén K; Bäckström K; Thalberg K; Schaefer T; Kristensen HG; Axelsson A
    Pharm Dev Technol; 2004 Nov; 9(4):409-17. PubMed ID: 15581077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gravimetric measurement of momentary drying rate of spray freeze-dried powders in vials.
    Gieseler H; Lee G
    J Pharm Sci; 2009 Sep; 98(9):3447-55. PubMed ID: 19603505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Do co-spray dried excipients offer better lysozyme stabilisation than single excipients?
    Hulse WL; Forbes RT; Bonner MC; Getrost M
    Eur J Pharm Sci; 2008 Mar; 33(3):294-305. PubMed ID: 18262776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the Particle Formation Process of Structured Microparticles.
    Baldelli A; Boraey MA; Nobes DS; Vehring R
    Mol Pharm; 2015 Aug; 12(8):2562-73. PubMed ID: 25685865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single droplet drying step characterization in microsphere preparation.
    Al Zaitone B; Lamprecht A
    Colloids Surf B Biointerfaces; 2013 May; 105():328-34. PubMed ID: 23395666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of the physical properties of spray-dried stabilised lysozyme particles.
    Liao YH; Brown MB; Quader A; Martin GP
    J Pharm Pharmacol; 2003 Sep; 55(9):1213-21. PubMed ID: 14604464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Particle size dependence of polymorphism in spray-dried mannitol.
    Lee YY; Wu JX; Yang M; Young PM; van den Berg F; Rantanen J
    Eur J Pharm Sci; 2011 Sep; 44(1-2):41-8. PubMed ID: 21699976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of spray dried submicron particles: Part A - Particle generation by aerosol conditioning.
    Strob R; Dobrowolski A; Schaldach G; Walzel P; Thommes M
    Int J Pharm; 2018 Sep; 548(1):423-430. PubMed ID: 29981411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid-polymer hybrid nanoparticles.
    Wang Y; Kho K; Cheow WS; Hadinoto K
    Int J Pharm; 2012 Mar; 424(1-2):98-106. PubMed ID: 22226876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunoglobulin G particles manufacturing by spray drying process for pressurised metered dose inhaler formulations.
    Carli V; Menu-Bouaouiche L; Cardinael P; Benissan L; Coquerel G
    Ann Pharm Fr; 2018 Jul; 76(4):291-298. PubMed ID: 29627069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of a diffusion-based single droplet drying model for encapsulation of a viral-vectored vaccine using an acoustic levitator.
    Morgan BA; Niinivaara E; Xing Z; Thompson MR; Cranston ED
    Int J Pharm; 2021 Aug; 605():120806. PubMed ID: 34144140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acoustic levitation as a screening method for excipient selection in the development of dry powder vaccines.
    Morgan BA; Xing Z; Cranston ED; Thompson MR
    Int J Pharm; 2019 May; 563():71-78. PubMed ID: 30930189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.