These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 1752319)
1. The thermal response and development of thermotolerance of the bone marrow stromal progenitor CFU-F. O'Hara MD; Lin C; Leeper DB Exp Hematol; 1991 Dec; 19(11):1096-100. PubMed ID: 1752319 [TBL] [Abstract][Full Text] [Related]
2. The development of thermotolerance in bone marrow CFU-S during chronic hyperthermia. O'Hara MD; Pollard MD; Xiong QB; Leeper DB Exp Hematol; 1991 Oct; 19(9):878-81. PubMed ID: 1893963 [TBL] [Abstract][Full Text] [Related]
3. Response of murine bone marrow granulocyte-macrophage colony-forming units to hyperthermia in situ. O'Hara MD; Rowley R; Arnold SB; Boyer JW; Leeper DB Radiat Res; 1990 May; 122(2):149-54. PubMed ID: 2336461 [TBL] [Abstract][Full Text] [Related]
4. Thermal response and hyperthermic radiosensitization of scid mouse bone marrow CFU-C. O'Hara MD; Pollard MD; Wheatley G; Regine WF; Mohiuddin M; Leeper DB Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):905-10. PubMed ID: 7860404 [TBL] [Abstract][Full Text] [Related]
5. The development and magnitude of thermotolerance during chronic hyperthermia in murine granulocyte-macrophage progenitors: II. Xiong QB; O'Hara MD; Pollard MD; Leeper DB Int J Hyperthermia; 1996; 12(1):77-86. PubMed ID: 8676010 [TBL] [Abstract][Full Text] [Related]
6. Intrinsic thermal response, thermotolerance development and stepdown heating in murine bone marrow progenitor cells. O'Hara MD; Xiong QB; Boyer JW; Leeper DB Int J Hyperthermia; 1992; 8(4):451-61. PubMed ID: 1402125 [TBL] [Abstract][Full Text] [Related]
7. Thermotolerance and profile of protein synthesis in murine bone marrow cells after heat shock. Mivechi NF; Li GC Cancer Res; 1985 Aug; 45(8):3843-9. PubMed ID: 4016754 [TBL] [Abstract][Full Text] [Related]
8. Lack of development of thermotolerance in early progenitors of murine bone marrow cells. Mivechi NF; Li GC Cancer Res; 1986 Jan; 46(1):198-202. PubMed ID: 3940190 [TBL] [Abstract][Full Text] [Related]
9. The development and magnitude of thermotolerance during chronic hyperthermia in murine bone marrow granulocyte-macrophage progenitors: I. O'Hara MD; Boyer JW; Lin C; Leeper DB Int J Hyperthermia; 1996; 12(1):87-95. PubMed ID: 8676011 [TBL] [Abstract][Full Text] [Related]
10. Heat sensitivity, thermotolerance, and profile of protein synthesis of human bone marrow progenitors. Mivechi NF Cancer Res; 1988 Jul; 48(13):3630-3. PubMed ID: 3378207 [TBL] [Abstract][Full Text] [Related]
11. Normal and malignant human myeloid progenitors differ in their sensitivity to hyperthermia. Murphy PB; Richman CM Exp Hematol; 1989 Dec; 17(11):1105-9. PubMed ID: 2583254 [TBL] [Abstract][Full Text] [Related]
12. Hyperthermic purging in vitro of murine leukemia cells (MK-8057): surviving fractions of normal and leukemic stem cells and the long-term survival of mice injected with the post-hyperthermic leukemia cells. Iwasawa T; Hirabayashi Y; Kubota N; Inoue T; Kakehi M; Matsui K Exp Hematol; 1991 Jun; 19(5):332-7. PubMed ID: 2026185 [TBL] [Abstract][Full Text] [Related]
13. Lack of effect of thermotolerance on radiation response and thermal radiosensitization of murine bone marrow progenitors. Mivechi NF; Li GC Cancer Res; 1987 Mar; 47(6):1538-41. PubMed ID: 3815353 [TBL] [Abstract][Full Text] [Related]
14. Changes of bone marrow stromal cells (MSC) in mice after drug induced eradication of hematopoietic cells: in vitro effects on normal bone marrow. Ben-Ishay Z; Prindull G; Sharon S Biomed Pharmacother; 1982; 36(8-9):353-9. PubMed ID: 7182013 [TBL] [Abstract][Full Text] [Related]
15. In vitro sensitivity of human hematopoietic progenitor cells to hyperthermia: critical temperature for cells to survive and its application to in vitro purging. Moriyama Y; Nikkuni K; Saito H; Aoki A; Furukawa T; Imanari A; Narita M; Kishi K; Takahashi M; Shibata A Bone Marrow Transplant; 1990 Oct; 6(4):243-6. PubMed ID: 2085698 [TBL] [Abstract][Full Text] [Related]
16. Comparative heat sensitivity of murine and human hemopoietic progenitors and clonogenic leukemia cells. Gidáli J; Fehér I; Kovács P Stem Cells; 1994 Sep; 12(5):533-8. PubMed ID: 7804126 [TBL] [Abstract][Full Text] [Related]
17. Influence of cellular, microenvironmental, and growth parameters on thermotolerance kinetics in vivo in human melanoma xenografts. Rofstad EK Cancer Res; 1989 Sep; 49(18):5027-32. PubMed ID: 2766273 [TBL] [Abstract][Full Text] [Related]
18. Arrhenius relationships from the molecule and cell to the clinic. Dewey WC Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695 [TBL] [Abstract][Full Text] [Related]
19. Effect of stem cell factor (c-kit ligand), granulocyte-macrophage colony stimulating factor and interleukin 3 on hematopoietic progenitors in human long-term bone marrow cultures. Lemoli RM; Gulati SC Stem Cells; 1993 Sep; 11(5):435-44. PubMed ID: 7694721 [TBL] [Abstract][Full Text] [Related]
20. Effects of recombinant human tumor necrosis factor on highly enriched hematopoietic progenitor cell populations from normal human bone marrow and peripheral blood and bone marrow from patients with chronic myeloid leukemia. Wisniewski D; Strife A; Atzpodien J; Clarkson BD Cancer Res; 1987 Sep; 47(18):4788-94. PubMed ID: 3040231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]