These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17523414)

  • 1. [Combined action of antibiotics and deoxyribonuclease on bacteria].
    Tets GV; Artemenko KL
    Antibiot Khimioter; 2006; 51(6):3-6. PubMed ID: 17523414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Impact of exogenic proteolytic enzymes on bacteria].
    Tets VV; Knorring GIu; Artemenko NK; Zaslavskaia NV; Artemenko KL
    Antibiot Khimioter; 2004; 49(12):9-13. PubMed ID: 16050494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of extracellular DNA destruction by DNase I on characteristics of forming biofilms.
    Tetz VV; Tetz GV
    DNA Cell Biol; 2010 Aug; 29(8):399-405. PubMed ID: 20491577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulated DNase improving the killing efficiency of antibiotics in staphylococcal biofilms.
    Liu C; Zhao Y; Su W; Chai J; Xu L; Cao J; Liu Y
    J Mater Chem B; 2020 May; 8(20):4395-4401. PubMed ID: 32400814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms.
    Chen Z; Ji H; Liu C; Bing W; Wang Z; Qu X
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10732-6. PubMed ID: 27484616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-biofilm peptides as a new weapon in antimicrobial warfare.
    Pletzer D; Coleman SR; Hancock RE
    Curr Opin Microbiol; 2016 Oct; 33():35-40. PubMed ID: 27318321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in the study of synergistic effect of anti-biofilm agents].
    Wang CZ; Cheng HJ
    Yao Xue Xue Bao; 2012 Mar; 47(3):339-45. PubMed ID: 22645757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom.
    van der Plas MJ; Dambrot C; Dogterom-Ballering HC; Kruithof S; van Dissel JT; Nibbering PH
    J Antimicrob Chemother; 2010 May; 65(5):917-23. PubMed ID: 20189943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Combined action of levofloxacin and DNAase on biofilms of urogenital infection pathogens].
    Tets GV; Artemenko NK; Zaslavskaia NV; Tets VV
    Urologiia; 2012; (1):21-4. PubMed ID: 22645996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial Biofilms on Polyamide Nanofibers: Factors Influencing Biofilm Formation and Evaluation.
    Lencova S; Svarcova V; Stiborova H; Demnerova K; Jencova V; Hozdova K; Zdenkova K
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2277-2288. PubMed ID: 33284019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens.
    Bakkiyaraj D; Nandhini JR; Malathy B; Pandian SK
    Biofouling; 2013 Sep; 29(8):929-37. PubMed ID: 23906229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of DNase and antibiotics on biofilm characteristics.
    Tetz GV; Artemenko NK; Tetz VV
    Antimicrob Agents Chemother; 2009 Mar; 53(3):1204-9. PubMed ID: 19064900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms.
    Lebeaux D; Chauhan A; Létoffé S; Fischer F; de Reuse H; Beloin C; Ghigo JM
    J Infect Dis; 2014 Nov; 210(9):1357-66. PubMed ID: 24837402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cuminaldehyde potentiates the antimicrobial actions of ciprofloxacin against Staphylococcus aureus and Escherichia coli.
    Monteiro-Neto V; de Souza CD; Gonzaga LF; da Silveira BC; Sousa NCF; Pontes JP; Santos DM; Martins WC; Pessoa JFV; Carvalho Júnior AR; Almeida VSS; de Oliveira NMT; de Araújo TS; Maria-Ferreira D; Mendes SJF; Ferro TAF; Fernandes ES
    PLoS One; 2020; 15(5):e0232987. PubMed ID: 32407399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effectiveness of antibiotics on bacteria in biofilms].
    Tets VV; Zaslavskaia NV
    Zh Mikrobiol Epidemiol Immunobiol; 2005; (5):24-6. PubMed ID: 16279529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designed De Novo α-Sheet Peptides Destabilize Bacterial Biofilms and Increase the Susceptibility of
    Prosswimmer T; Nick SE; Bryers JD; Daggett V
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc as an agent for the prevention of biofilm formation by pathogenic bacteria.
    Wu C; Labrie J; Tremblay YD; Haine D; Mourez M; Jacques M
    J Appl Microbiol; 2013 Jul; 115(1):30-40. PubMed ID: 23509865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm susceptibility to metal toxicity.
    Harrison JJ; Ceri H; Stremick CA; Turner RJ
    Environ Microbiol; 2004 Dec; 6(12):1220-7. PubMed ID: 15560820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chimeric analogs of human β-defensin 1 and θ-defensin disrupt pre-established bacterial biofilms.
    Mathew B; Olli S; Guru A; Nagaraj R
    Bioorg Med Chem Lett; 2017 Aug; 27(15):3264-3266. PubMed ID: 28642103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkaline Phosphatase Activity of Staphylococcus aureus Grown in Biofilm and Suspension Cultures.
    Danikowski KM; Cheng T
    Curr Microbiol; 2018 Sep; 75(9):1226-1230. PubMed ID: 29846772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.