BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17523679)

  • 1. The conversion of vitamin K epoxide to vitamin K quinone and vitamin K quinone to vitamin K hydroquinone uses the same active site cysteines.
    Jin DY; Tie JK; Stafford DW
    Biochemistry; 2007 Jun; 46(24):7279-83. PubMed ID: 17523679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin.
    Rost S; Fregin A; Hünerberg M; Bevans CG; Müller CR; Oldenburg J
    Thromb Haemost; 2005 Oct; 94(4):780-6. PubMed ID: 16270630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of vitamin K epoxide reductase.
    Tie JK; Stafford DW
    Vitam Horm; 2008; 78():103-30. PubMed ID: 18374192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel insight into the mechanism of the vitamin K oxidoreductase (VKOR): electron relay through Cys43 and Cys51 reduces VKOR to allow vitamin K reduction and facilitation of vitamin K-dependent protein carboxylation.
    Rishavy MA; Usubalieva A; Hallgren KW; Berkner KL
    J Biol Chem; 2011 Mar; 286(9):7267-78. PubMed ID: 20978134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purified vitamin K epoxide reductase alone is sufficient for conversion of vitamin K epoxide to vitamin K and vitamin K to vitamin KH2.
    Chu PH; Huang TY; Williams J; Stafford DW
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19308-13. PubMed ID: 17164330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a bacterial homologue of vitamin K epoxide reductase.
    Li W; Schulman S; Dutton RJ; Boyd D; Beckwith J; Rapoport TA
    Nature; 2010 Jan; 463(7280):507-12. PubMed ID: 20110994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantum chemical study of the mechanism of action of Vitamin K epoxide reductase (VKOR) II. Transition states.
    Davis CH; Deerfield D; Wymore T; Stafford DW; Pedersen LG
    J Mol Graph Model; 2007 Sep; 26(2):401-8. PubMed ID: 17182266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Warfarin and vitamin K compete for binding to Phe55 in human VKOR.
    Czogalla KJ; Biswas A; Höning K; Hornung V; Liphardt K; Watzka M; Oldenburg J
    Nat Struct Mol Biol; 2017 Jan; 24(1):77-85. PubMed ID: 27941861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin K epoxide reductase prefers ER membrane-anchored thioredoxin-like redox partners.
    Schulman S; Wang B; Li W; Rapoport TA
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15027-32. PubMed ID: 20696932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin K epoxide reductase and its paralogous enzyme have different structures and functions.
    Sinhadri BCS; Jin DY; Stafford DW; Tie JK
    Sci Rep; 2017 Dec; 7(1):17632. PubMed ID: 29247216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.
    Rost S; Fregin A; Ivaskevicius V; Conzelmann E; Hörtnagel K; Pelz HJ; Lappegard K; Seifried E; Scharrer I; Tuddenham EG; Müller CR; Strom TM; Oldenburg J
    Nature; 2004 Feb; 427(6974):537-41. PubMed ID: 14765194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2005 Mar; 280(11):10540-7. PubMed ID: 15640149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane.
    Cain D; Hutson SM; Wallin R
    J Biol Chem; 1997 Nov; 272(46):29068-75. PubMed ID: 9360981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition.
    Wu S; Chen X; Jin DY; Stafford DW; Pedersen LG; Tie JK
    Blood; 2018 Aug; 132(6):647-657. PubMed ID: 29743176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional study of the vitamin K cycle in mammalian cells.
    Tie JK; Jin DY; Straight DL; Stafford DW
    Blood; 2011 Mar; 117(10):2967-74. PubMed ID: 21239697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species comparison of vitamin K1 2,3-epoxide reductase activity in vitro: kinetics and warfarin inhibition.
    Wilson CR; Sauer JM; Carlson GP; Wallin R; Ward MP; Hooser SB
    Toxicology; 2003 Aug; 189(3):191-8. PubMed ID: 12832152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural features determining the vitamin K epoxide reduction activity in the VKOR family of membrane oxidoreductases.
    Shen G; Li C; Cao Q; Megta AK; Li S; Gao M; Liu H; Shen Y; Chen Y; Yu H; Li S; Li W
    FEBS J; 2022 Aug; 289(15):4564-4579. PubMed ID: 35113495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin.
    Dutton RJ; Wayman A; Wei JR; Rubin EJ; Beckwith J; Boyd D
    Proc Natl Acad Sci U S A; 2010 Jan; 107(1):297-301. PubMed ID: 20018758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of a vitamin K epoxide reductase that catalyzes conversion of vitamin K 2,3-epoxide to 3-hydroxy-2-methyl-3-phytyl-2,3-dihydronaphthoquinone.
    Mukharji I; Silverman RB
    Proc Natl Acad Sci U S A; 1985 May; 82(9):2713-7. PubMed ID: 3857611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.