BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17523695)

  • 41. Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status.
    Andersson A; Ritz C; Lindgren D; Edén P; Lassen C; Heldrup J; Olofsson T; Råde J; Fontes M; Porwit-Macdonald A; Behrendtz M; Höglund M; Johansson B; Fioretos T
    Leukemia; 2007 Jun; 21(6):1198-203. PubMed ID: 17410184
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wilms' tumor gene 1 (WT1) expression in childhood acute lymphoblastic leukemia: a wide range of WT1 expression levels, its impact on prognosis and minimal residual disease monitoring.
    Boublikova L; Kalinova M; Ryan J; Quinn F; O'Marcaigh A; Smith O; Browne P; Stary J; McCann SR; Trka J; Lawler M
    Leukemia; 2006 Feb; 20(2):254-63. PubMed ID: 16341043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of glutathione S-transferase gene deletion on early relapse in childhood B-precursor acute lymphoblastic leukemia.
    Takanashi M; Morimoto A; Yagi T; Kuriyama K; Kano G; Imamura T; Hibi S; Todo S; Imashuku S
    Haematologica; 2003 Nov; 88(11):1238-44. PubMed ID: 14607752
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genomic and pharmacogenetic studies of childhood acute lymphoblastic leukemia.
    Pui CH
    Front Med; 2015 Mar; 9(1):1-9. PubMed ID: 25511622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gene expression profiles of B-lineage adult acute lymphocytic leukemia reveal genetic patterns that identify lineage derivation and distinct mechanisms of transformation.
    Chiaretti S; Li X; Gentleman R; Vitale A; Wang KS; Mandelli F; Foà R; Ritz J
    Clin Cancer Res; 2005 Oct; 11(20):7209-19. PubMed ID: 16243790
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS.
    Cario G; Izraeli S; Teichert A; Rhein P; Skokowa J; Möricke A; Zimmermann M; Schrauder A; Karawajew L; Ludwig WD; Welte K; Schünemann HJ; Schlegelberger B; Schrappe M; Stanulla M
    J Clin Oncol; 2007 Oct; 25(30):4813-20. PubMed ID: 17947730
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent research advances in childhood acute lymphoblastic leukemia.
    Pui CH
    J Formos Med Assoc; 2010 Nov; 109(11):777-87. PubMed ID: 21126650
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrative computational in-depth analysis of dysregulated miRNA-mRNA interactions in drug-resistant pediatric acute lymphoblastic leukemia cells: an attempt to obtain new potential gene-miRNA pathways involved in response to treatment.
    Mesrian Tanha H; Mojtabavi Naeini M; Rahgozar S; Moafi A; Honardoost MA
    Tumour Biol; 2016 Jun; 37(6):7861-72. PubMed ID: 26700663
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The biology of relapsed acute lymphoblastic leukemia: opportunities for therapeutic interventions.
    Bhatla T; Jones CL; Meyer JA; Vitanza NA; Raetz EA; Carroll WL
    J Pediatr Hematol Oncol; 2014 Aug; 36(6):413-8. PubMed ID: 24942023
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insights of Acute Lymphoblastic Leukemia with Development of Genomic Investigation.
    Xu H; Shu Y
    Methods Mol Biol; 2018; 1754():387-413. PubMed ID: 29536454
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New strategies in acute lymphoblastic leukemia: translating advances in genomics into clinical practice.
    Mullighan CG
    Clin Cancer Res; 2011 Feb; 17(3):396-400. PubMed ID: 21149616
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Cytogenetics and in vitro drug resistance of acute leukemia in children and adults].
    Styczyński J; Haus O
    Postepy Hig Med Dosw (Online); 2006; 60():527-37. PubMed ID: 17060894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions.
    Mullighan CG; Downing JR
    Leukemia; 2009 Jul; 23(7):1209-18. PubMed ID: 19242497
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.
    Raetz EA; Perkins SL; Bhojwani D; Smock K; Philip M; Carroll WL; Min DJ
    Pediatr Blood Cancer; 2006 Aug; 47(2):130-40. PubMed ID: 16358311
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of genomics for risk stratification of childhood acute lymphoblastic leukaemia: from bench to bedside?
    Izraeli S
    Br J Haematol; 2010 Oct; 151(2):119-31. PubMed ID: 20678159
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microarray-based identification of new targets for specific therapies in pediatric leukemia.
    den Boer ML; Pieters R
    Curr Drug Targets; 2007 Jun; 8(6):761-4. PubMed ID: 17584031
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acute leukemia: subtype discovery and prediction of outcome by gene expression profiling.
    Downing JR
    Verh Dtsch Ges Pathol; 2003; 87():66-71. PubMed ID: 16888896
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Initial leukemic gene expression profiles of patients with poor in vivo prednisone response are similar to those of blasts persisting under prednisone treatment in childhood acute lymphoblastic leukemia.
    Cario G; Fetz A; Bretscher C; Möricke A; Schrauder A; Stanulla M; Schrappe M
    Ann Hematol; 2008 Sep; 87(9):709-16. PubMed ID: 18521602
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biology of childhood acute lymphoblastic leukemia.
    Lo Nigro L
    J Pediatr Hematol Oncol; 2013 May; 35(4):245-52. PubMed ID: 23612374
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Classifying subtypes of acute lymphoblastic leukemia using silhouette statistics and genetic algorithms.
    Lin TC; Liu RS; Chao YT; Chen SY
    Gene; 2013 Apr; 518(1):159-63. PubMed ID: 23237780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.