These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 17524355)

  • 1. siRNA selection criteria--statistical analyses of applicability and significance.
    Bradác I; Svobodová Vareková R; Wacenovsky M; Skrdla M; Plchút M; Polcík M
    Biochem Biophys Res Commun; 2007 Jul; 359(1):83-7. PubMed ID: 17524355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of target site accessibility on the design of effective siRNAs.
    Tafer H; Ameres SL; Obernosterer G; Gebeshuber CA; Schroeder R; Martinez J; Hofacker IL
    Nat Biotechnol; 2008 May; 26(5):578-83. PubMed ID: 18438400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RFRCDB-siRNA: improved design of siRNAs by random forest regression model coupled with database searching.
    Jiang P; Wu H; Da Y; Sang F; Wei J; Sun X; Lu Z
    Comput Methods Programs Biomed; 2007 Sep; 87(3):230-8. PubMed ID: 17644215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An algorithm for selection of functional siRNA sequences.
    Amarzguioui M; Prydz H
    Biochem Biophys Res Commun; 2004 Apr; 316(4):1050-8. PubMed ID: 15044091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. www.rnaworkbench.com: A new program for analyzing RNA interference.
    Vareková RS; Bradác I; Plchút M; Skrdla M; Wacenovsky M; Mahr H; Mayer G; Tanner H; Brugger H; Withalm J; Lederer P; Huber H; Gierlinger G; Graf R; Tafer H; Hofacker I; Schuster P; Polcík M
    Comput Methods Programs Biomed; 2008 Apr; 90(1):89-94. PubMed ID: 18207283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational models with thermodynamic and composition features improve siRNA design.
    Shabalina SA; Spiridonov AN; Ogurtsov AY
    BMC Bioinformatics; 2006 Feb; 7():65. PubMed ID: 16472402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. siRNA becomes smart and intelligent.
    Miyagishi M; Taira K
    Nat Biotechnol; 2005 Aug; 23(8):946-7. PubMed ID: 16082364
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of a software tool and criteria evaluation for efficient design of small interfering RNA.
    Chaudhary A; Srivastava S; Garg S
    Biochem Biophys Res Commun; 2011 Jan; 404(1):313-20. PubMed ID: 21145307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of assembly of siRNA elements into RNA-induced silencing complex by fork-siRNA duplex carrying nucleotide mismatches at the 3'- or 5'-end of the sense-stranded siRNA element.
    Ohnishi Y; Tokunaga K; Hohjoh H
    Biochem Biophys Res Commun; 2005 Apr; 329(2):516-21. PubMed ID: 15737617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of siRNA target sequences by using fragmentized DNA.
    Kasim V; Taira K; Miyagishi M
    J Gene Med; 2006 Jun; 8(6):782-91. PubMed ID: 16532512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated siRNA design based on surveying of features associated with high RNAi effectiveness.
    Gong W; Ren Y; Xu Q; Wang Y; Lin D; Zhou H; Li T
    BMC Bioinformatics; 2006 Nov; 7():516. PubMed ID: 17129386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico selection of active siRNA.
    Patzel V
    Drug Discov Today; 2007 Feb; 12(3-4):139-48. PubMed ID: 17275734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selecting effective siRNA sequences based on the self-organizing map and statistical techniques.
    Takasaki S; Kawamura Y; Konagaya A
    Comput Biol Chem; 2006 Jun; 30(3):169-78. PubMed ID: 16600687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focusing on RISC assembly in mammalian cells.
    Hong J; Wei N; Chalk A; Wang J; Song Y; Yi F; Qiao RP; Sonnhammer EL; Wahlestedt C; Liang Z; Du Q
    Biochem Biophys Res Commun; 2008 Apr; 368(3):703-8. PubMed ID: 18252196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structure-activity relationship study of siRNAs with structural variations.
    Chang CI; Hong SW; Kim S; Lee DK
    Biochem Biophys Res Commun; 2007 Aug; 359(4):997-1003. PubMed ID: 17577577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of siRNA knockdown efficiency using artificial neural network models.
    Ge G; Wong GW; Luo B
    Biochem Biophys Res Commun; 2005 Oct; 336(2):723-8. PubMed ID: 16153609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a genome-wide siRNA library using an artificial neural network.
    Huesken D; Lange J; Mickanin C; Weiler J; Asselbergs F; Warner J; Meloon B; Engel S; Rosenberg A; Cohen D; Labow M; Reinhardt M; Natt F; Hall J
    Nat Biotechnol; 2005 Aug; 23(8):995-1001. PubMed ID: 16025102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selecting effective siRNA target sequences by using Bayes' theorem.
    Takasaki S
    Comput Biol Chem; 2009 Oct; 33(5):368-72. PubMed ID: 19682951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of siRNA efficacy predictors.
    Saetrom P; Snøve O
    Biochem Biophys Res Commun; 2004 Aug; 321(1):247-53. PubMed ID: 15358242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition potency of siRNA is specified by the 5'-half sequence of the guide strand.
    Yoo JW; Kim S; Lee DK
    Biochem Biophys Res Commun; 2008 Feb; 367(1):78-83. PubMed ID: 18164261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.