BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17524475)

  • 1. In vitro blood reactivity to hydroxylated and non-hydroxylated polymer surfaces.
    Sperling C; Maitz MF; Talkenberger S; Gouzy MF; Groth T; Werner C
    Biomaterials; 2007 Sep; 28(25):3617-25. PubMed ID: 17524475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro hemocompatibility of self-assembled monolayers displaying various functional groups.
    Sperling C; Schweiss RB; Streller U; Werner C
    Biomaterials; 2005 Nov; 26(33):6547-57. PubMed ID: 15939466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thrombin, kallikrein and complement C5b-9 adsorption on hydrophilic and hydrophobic titanium and glass after short time exposure to whole blood.
    Yahyapour N; Eriksson C; Malmberg P; Nygren H
    Biomaterials; 2004 Jul; 25(16):3171-6. PubMed ID: 14980412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ability of surface characteristics of materials to trigger leukocyte tissue factor expression.
    Fischer M; Sperling C; Tengvall P; Werner C
    Biomaterials; 2010 Mar; 31(9):2498-507. PubMed ID: 20035991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of complement inhibition and heparin coating on artificial surface-induced leukocyte and platelet activation.
    LappegÄrd KT; Fung M; Bergseth G; Riesenfeld J; Lambris JD; Videm V; Mollnes TE
    Ann Thorac Surg; 2004 Mar; 77(3):932-41. PubMed ID: 14992902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular graft-associated complement activation and leukocyte adhesion in an artificial circulation.
    Kottke-Marchant K; Anderson JM; Miller KM; Marchant RE; Lazarus H
    J Biomed Mater Res; 1987 Mar; 21(3):379-97. PubMed ID: 2951388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leukocyte activation and leukocyte procoagulant activities after blood contact with polystyrene and polyethylene glycol-immobilized polystyrene beads.
    Gorbet MB; Sefton MV
    J Lab Clin Med; 2001 May; 137(5):345-55. PubMed ID: 11329532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood compatibility of surfaces with superlow protein adsorption.
    Zhang Z; Zhang M; Chen S; Horbett TA; Ratner BD; Jiang S
    Biomaterials; 2008 Nov; 29(32):4285-91. PubMed ID: 18722010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalently immobilized thrombomodulin inhibits coagulation and complement activation of artificial surfaces in vitro.
    Sperling C; Salchert K; Streller U; Werner C
    Biomaterials; 2004 Sep; 25(21):5101-13. PubMed ID: 15109834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo thrombus formation induced by complement activation on polymer surfaces.
    Hayashi K; Fukumura H; Yamamoto N
    J Biomed Mater Res; 1990 Oct; 24(10):1385-95. PubMed ID: 2283355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hirudin versus heparin for use in whole blood in vitro biocompatibility models.
    Bexborn F; Engberg AE; Sandholm K; Mollnes TE; Hong J; Nilsson Ekdahl K
    J Biomed Mater Res A; 2009 Jun; 89(4):951-9. PubMed ID: 18470919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of substrate molecular mobility on surface induced immune complement activation and blood plasma coagulation.
    Berglin M; Andersson M; Sellborn A; Elwing H
    Biomaterials; 2004 Aug; 25(19):4581-90. PubMed ID: 15120503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complement inhibition reduces material-induced leukocyte activation with PEG modified polystyrene beads (Tentagel) but not polystyrene beads.
    Gorbet MB; Sefton MV
    J Biomed Mater Res A; 2005 Sep; 74(4):511-22. PubMed ID: 16035062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-biofouling properties of polymers with a carboxybetaine moiety.
    Tada S; Inaba C; Mizukami K; Fujishita S; Gemmei-Ide M; Kitano H; Mochizuki A; Tanaka M; Matsunaga T
    Macromol Biosci; 2009 Jan; 9(1):63-70. PubMed ID: 18814317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of swelling of poly(vinyl alcohol) layers on complement activation.
    Arima Y; Kawagoe M; Furuta M; Toda M; Iwata H
    Biomaterials; 2010 Sep; 31(27):6926-33. PubMed ID: 20566213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complement activation on solid surfaces as determined by C3 deposition and hemolytic consumption.
    Liu L; Elwing H
    J Biomed Mater Res; 1994 Jul; 28(7):767-73. PubMed ID: 8083244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of complement C3 opsonization, C5a receptor, and CD14 in E. coli-induced up-regulation of granulocyte and monocyte CD11b/CD18 (CR3), phagocytosis, and oxidative burst in human whole blood.
    Brekke OL; Christiansen D; Fure H; Fung M; Mollnes TE
    J Leukoc Biol; 2007 Jun; 81(6):1404-13. PubMed ID: 17389579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-adsorbed fibrinogen and fibrin may activate the contact activation system.
    Sanchez J; Elgue G; Larsson R; Nilsson B; Olsson P
    Thromb Res; 2008; 122(2):257-63. PubMed ID: 18177925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leukocyte effects of C5a-receptor blockade during simulated extracorporeal circulation.
    Rinder CS; Smith MJ; Rinder HM; Cortright DN; Brodbeck RM; Krause JE; Smith BR
    Ann Thorac Surg; 2007 Jan; 83(1):146-52. PubMed ID: 17184649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The activation of the complement system by polymer materials and their blood compatibility.
    Sevast'ianov VI; Tseytlina EA
    J Biomed Mater Res; 1984; 18(9):969-78. PubMed ID: 6544799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.