BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 17524477)

  • 1. The extracellular matrix as a biologic scaffold material.
    Badylak SF
    Biomaterials; 2007 Sep; 28(25):3587-93. PubMed ID: 17524477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative method for evaluating the degradation of biologic scaffold materials.
    Gilbert TW; Stewart-Akers AM; Badylak SF
    Biomaterials; 2007 Jan; 28(2):147-50. PubMed ID: 16949150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction.
    Badylak SF
    Transpl Immunol; 2004 Apr; 12(3-4):367-77. PubMed ID: 15157928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Extraction techniques and biocompatibility evaluations of naturally derived nerve extracellular matrix].
    Wang Y; Peng J; Zhao Z; Huang J; Zhao B; Zhang L; Sui X; Xu W; Chen J; Lu S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Sep; 24(9):1128-32. PubMed ID: 20939489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrated versus lyophilized forms of porcine extracellular matrix derived from the urinary bladder.
    Freytes DO; Tullius RS; Valentin JE; Stewart-Akers AM; Badylak SF
    J Biomed Mater Res A; 2008 Dec; 87(4):862-72. PubMed ID: 18228251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential for synthesis and degradation of extracellular matrix proteins by valve interstitial cells seeded onto collagen scaffolds.
    Dreger SA; Thomas P; Sachlos E; Chester AH; Czernuszka JT; Taylor PM; Yacoub MH
    Tissue Eng; 2006 Sep; 12(9):2533-40. PubMed ID: 16995786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial tissue engineering: the extracellular matrix.
    Akhyari P; Kamiya H; Haverich A; Karck M; Lichtenberg A
    Eur J Cardiothorac Surg; 2008 Aug; 34(2):229-41. PubMed ID: 18502661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of extracellular matrix stiffness in engineered heart valve tissues based on nonwoven scaffolds.
    Engelmayr GC; Sacks MS
    Biomech Model Mechanobiol; 2008 Aug; 7(4):309-21. PubMed ID: 17713801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The biologic functional surfaces and their applications in tissue engineering].
    Yao F; Chen M; Zhang H; Zhang H; An X; Yao K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1177-9, 1199. PubMed ID: 18027721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular matrix-polymer hybrid materials produced in a pulsed-flow bioreactor system.
    Aulin C; Foroughi F; Brown R; Hilborn J
    J Tissue Eng Regen Med; 2009 Mar; 3(3):188-95. PubMed ID: 19247985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds.
    Simionescu DT; Lu Q; Song Y; Lee JS; Rosenbalm TN; Kelley C; Vyavahare NR
    Biomaterials; 2006 Feb; 27(5):702-13. PubMed ID: 16048731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen diffusivity of biologic and synthetic scaffold materials for tissue engineering.
    Valentin JE; Freytes DO; Grasman JM; Pesyna C; Freund J; Gilbert TW; Badylak SF
    J Biomed Mater Res A; 2009 Dec; 91(4):1010-7. PubMed ID: 19097154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructured extracellular matrices in tissue engineering and development.
    Nelson CM; Tien J
    Curr Opin Biotechnol; 2006 Oct; 17(5):518-23. PubMed ID: 16971111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun scaffold tailored for tissue-specific extracellular matrix.
    Teo WE; He W; Ramakrishna S
    Biotechnol J; 2006 Sep; 1(9):918-29. PubMed ID: 16941439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human NELL1 protein augments constructive tissue remodeling with biologic scaffolds.
    Turner NJ; Londono R; Dearth CL; Culiat CT; Badylak SF
    Cells Tissues Organs; 2013; 198(4):249-65. PubMed ID: 24335144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular matrix as a biological scaffold material: Structure and function.
    Badylak SF; Freytes DO; Gilbert TW
    Acta Biomater; 2009 Jan; 5(1):1-13. PubMed ID: 18938117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation behaviors of electrospun resorbable polyester nanofibers.
    Dong Y; Liao S; Ngiam M; Chan CK; Ramakrishna S
    Tissue Eng Part B Rev; 2009 Sep; 15(3):333-51. PubMed ID: 19459780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin.
    Koh HS; Yong T; Chan CK; Ramakrishna S
    Biomaterials; 2008 Sep; 29(26):3574-82. PubMed ID: 18533251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consequences of ineffective decellularization of biologic scaffolds on the host response.
    Keane TJ; Londono R; Turner NJ; Badylak SF
    Biomaterials; 2012 Feb; 33(6):1771-81. PubMed ID: 22137126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.