These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 1752515)

  • 21. Red cell senescence.
    Clark MR; Shohet SB
    Clin Haematol; 1985 Feb; 14(1):223-57. PubMed ID: 3886238
    [No Abstract]   [Full Text] [Related]  

  • 22. Red cell aging: senescent cell antigen, band 3, and band 3 mutations associated with cellular dysfunction.
    Kay MM
    Prog Clin Biol Res; 1989; 319():199-217; discussion 218-23. PubMed ID: 2533686
    [No Abstract]   [Full Text] [Related]  

  • 23. Naturally occurring human "antigalactosyl" IgG antibodies are heterophile antibodies recognizing blood-group-related substances.
    Kay MM; Bosman GJ
    Exp Hematol; 1985 Dec; 13(11):1103-12. PubMed ID: 3840744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane processes during 'in vivo' aging of human erythrocytes.
    Brovelli A; Seppi C; Pallavicini G; Balduini C
    Biomed Biochim Acta; 1983; 42(11-12):S122-6. PubMed ID: 6675682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The red cell: a primer.
    Eaton JW
    Prog Clin Biol Res; 1981; 56():1-4. PubMed ID: 7330005
    [No Abstract]   [Full Text] [Related]  

  • 26. The red cell anion-transport system: kinetics and physiological implications.
    Brahm J
    Soc Gen Physiol Ser; 1988; 43():141-50. PubMed ID: 3077541
    [No Abstract]   [Full Text] [Related]  

  • 27. The membrane of the human neonatal red cell.
    Matovcik LM; Mentzer WC
    Clin Haematol; 1985 Feb; 14(1):203-21. PubMed ID: 3886237
    [No Abstract]   [Full Text] [Related]  

  • 28. [The significance of research on erythrocyte membranes].
    Zhang ZN; Pan HZ
    Sheng Li Ke Xue Jin Zhan; 1984 Jul; 15(3):222-7. PubMed ID: 6515406
    [No Abstract]   [Full Text] [Related]  

  • 29. Naturally occurring autoantibodies to exoplasmic and cryptic regions of band 3 protein, the major integral membrane protein of human red blood cells.
    Lutz HU; Flepp R; Stringaro-Wipf G
    J Immunol; 1984 Nov; 133(5):2610-8. PubMed ID: 6481164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Total red cell calcium content, cytosolic red cell free calcium and erythrocyte membrane dynamic properties in diabetes mellitus.
    Caimi G; Serra A; Lo Presti R; Grifo G; Romano A; Galluzzo A; Sarno A
    Microcirc Endothelium Lymphatics; 1991; 7(4-6):257-66. PubMed ID: 1815107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Red cell membrane transport abnormalities.
    Bruce LJ
    Curr Opin Hematol; 2008 May; 15(3):184-90. PubMed ID: 18391782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Modulation of the interaction between band 3 and the cytoskeleton by binding wheat germ agglutinin to erythrocyte membranes].
    Bonnet D; Begard E; Douzou P
    C R Seances Acad Sci III; 1982 Oct; 295(5):351-4. PubMed ID: 6817871
    [No Abstract]   [Full Text] [Related]  

  • 33. Macrophage recognition of saccharide chains on the erythrocytes damaged by iron-catalyzed oxidation.
    Beppu M; Takahashi T; Kashiwada M; Masukawa S; Kikugawa K
    Arch Biochem Biophys; 1994 Jul; 312(1):189-97. PubMed ID: 8031127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chronology of the formation of vesicles and membrane protein aggregates during erythrocyte aging.
    Ghailani N; Guillemin C; Vigneron C
    Nouv Rev Fr Hematol (1978); 1995; 37(6):313-9. PubMed ID: 8907625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relationships between oligomeric structure and function of band 3 protein from human erythrocyte membranes: present knowledge and suggestions for further experiments.
    Schubert D
    Mol Aspects Med; 1988; 10(3):233-7. PubMed ID: 2976450
    [No Abstract]   [Full Text] [Related]  

  • 36. Storage-dependent remodeling of the red blood cell membrane is associated with increased immunoglobulin G binding, lipid raft rearrangement, and caspase activation.
    Kriebardis AG; Antonelou MH; Stamoulis KE; Economou-Petersen E; Margaritis LH; Papassideri IS
    Transfusion; 2007 Jul; 47(7):1212-20. PubMed ID: 17581156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenylhydrazine causes sulfhydryl oxidation and protein aggregation in hemoglobin-free human erythrocyte membranes.
    Hashmi AN; Saleemuddin M
    Biochem Mol Biol Int; 1996 Oct; 40(3):543-50. PubMed ID: 8908364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aging of the erythrocyte. VI. Accelerated red cell membrane aging in Down's syndrome?
    Bartosz G; Soszyński M; Kedziora J
    Cell Biol Int Rep; 1982 Jan; 6(1):73-7. PubMed ID: 6459857
    [No Abstract]   [Full Text] [Related]  

  • 39. Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system.
    Fröhlich O; Gunn RB
    Biochim Biophys Acta; 1986 Sep; 864(2):169-94. PubMed ID: 3527268
    [No Abstract]   [Full Text] [Related]  

  • 40. Loss of Ytb antigen activity after treatment of red cells with either dithiothreitol or 2-mercaptoethanol.
    Shulman IA; Nelson JM; Lam HT
    Transfusion; 1986; 26(2):214. PubMed ID: 3952797
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.