These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 17525468)
1. Development of indole chemistry to label tryptophan residues in protein for determination of tryptophan surface accessibility. Ladner CL; Turner RJ; Edwards RA Protein Sci; 2007 Jun; 16(6):1204-13. PubMed ID: 17525468 [TBL] [Abstract][Full Text] [Related]
2. Identification of trichloroethanol visualized proteins from two-dimensional polyacrylamide gels by mass spectrometry. Ladner CL; Edwards RA; Schriemer DC; Turner RJ Anal Chem; 2006 Apr; 78(7):2388-96. PubMed ID: 16579625 [TBL] [Abstract][Full Text] [Related]
3. Excited state photoreaction between the indole side chain of tryptophan and halocompounds generates new fluorophores and unique modifications. Ladner CL; Tran K; Le M; Turner RJ; Edwards RA Photochem Photobiol; 2014; 90(5):1027-33. PubMed ID: 24738707 [TBL] [Abstract][Full Text] [Related]
4. Analysis of tryptophan surface accessibility in proteins by MALDI-TOF mass spectrometry. Strohalm M; Santrůcek J; Hynek R; Kodícek M Biochem Biophys Res Commun; 2004 Oct; 323(4):1134-8. PubMed ID: 15451414 [TBL] [Abstract][Full Text] [Related]
5. Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry. Kiselar JG; Maleknia SD; Sullivan M; Downard KM; Chance MR Int J Radiat Biol; 2002 Feb; 78(2):101-14. PubMed ID: 11779360 [TBL] [Abstract][Full Text] [Related]
6. Tyrosine residues modification studied by MALDI-TOF mass spectrometry. Santrůcek J; Strohalm M; Kadlcík V; Hynek R; Kodícek M Biochem Biophys Res Commun; 2004 Oct; 323(4):1151-6. PubMed ID: 15451417 [TBL] [Abstract][Full Text] [Related]
7. Tertiary structure formation at specific tryptophan side chains in the refolding of human carbonic anhydrase II. Jonasson P; Aronsson G; Carlsson U; Jonsson BH Biochemistry; 1997 Apr; 36(17):5142-8. PubMed ID: 9136875 [TBL] [Abstract][Full Text] [Related]
8. Molten globule-like state of bovine carbonic anhydrase in the presence of acetonitrile. Safarian S; Saffarzadeh M; Zargar SJ; Moosavi-Movahedi AA J Biochem; 2006 Jun; 139(6):1025-33. PubMed ID: 16788053 [TBL] [Abstract][Full Text] [Related]
9. Tryptophan modification by 2-hydroxy-5-nitrobenzyl bromide studied by MALDI-TOF mass spectrometry. Strohalm M; Kodícek M; Pechar M Biochem Biophys Res Commun; 2003 Dec; 312(3):811-6. PubMed ID: 14680838 [TBL] [Abstract][Full Text] [Related]
10. Assessment of solvent residues accessibility using three Sulfo-NHS-biotin reagents in parallel: application to footprint changes of a methyltransferase upon binding its substrate. Gabant G; Augier J; Armengaud J J Mass Spectrom; 2008 Mar; 43(3):360-70. PubMed ID: 17968972 [TBL] [Abstract][Full Text] [Related]
11. Selective tryptophan modification with rhodium carbenoids in aqueous solution. Antos JM; Francis MB J Am Chem Soc; 2004 Aug; 126(33):10256-7. PubMed ID: 15315433 [TBL] [Abstract][Full Text] [Related]
12. Hydroxyl radical probe of the surface of lysozyme by synchrotron radiolysis and mass spectrometry. Maleknia SD; Kiselar JG; Downard KM Rapid Commun Mass Spectrom; 2002; 16(1):53-61. PubMed ID: 11754247 [TBL] [Abstract][Full Text] [Related]
14. Identification of protein-binding peptides by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of peptide beads selected from the screening of one bead-one peptide combinatorial libraries. Marani MM; Oliveira E; Côte S; Camperi SA; Albericio F; Cascone O Anal Biochem; 2007 Nov; 370(2):215-22. PubMed ID: 17888393 [TBL] [Abstract][Full Text] [Related]
15. Selective isolation of N-terminal peptides from proteins and their de novo sequencing by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry without regard to unblocking or blocking of N-terminal amino acids. Yamaguchi M; Nakayama D; Shima K; Kuyama H; Ando E; Okamura TA; Ueyama N; Nakazawa T; Norioka S; Nishimura O; Tsunasawa S Rapid Commun Mass Spectrom; 2008 Oct; 22(20):3313-9. PubMed ID: 18821723 [TBL] [Abstract][Full Text] [Related]
16. Accessibility governs the relative reactivity of basic residues in formaldehyde-induced protein modifications. Toews J; Rogalski JC; Kast J Anal Chim Acta; 2010 Aug; 676(1-2):60-7. PubMed ID: 20800743 [TBL] [Abstract][Full Text] [Related]
17. [A method of calculation of accessibility to solvent of aromatic amino acid residues of proteins in water-organic mixtures]. Shevchenko AA; Kost OA Biokhimiia; 1996 Dec; 61(12):2092-8. PubMed ID: 9156553 [TBL] [Abstract][Full Text] [Related]
18. Modification of tryptophan and methionine residues is implicated in the oxidative inactivation of surfactant protein B. Manzanares D; Rodriguez-Capote K; Liu S; Haines T; Ramos Y; Zhao L; Doherty-Kirby A; Lajoie G; Possmayer F Biochemistry; 2007 May; 46(18):5604-15. PubMed ID: 17425286 [TBL] [Abstract][Full Text] [Related]
19. Analysis of protein solvent accessible surfaces by photochemical oxidation and mass spectrometry. Sharp JS; Becker JM; Hettich RL Anal Chem; 2004 Feb; 76(3):672-83. PubMed ID: 14750862 [TBL] [Abstract][Full Text] [Related]
20. Simplifying sample handling for protein identification by peptide mass fingerprint using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Cordeiro FM; Carreira RJ; Rial-Otero R; Rivas MG; Moura I; Capelo JL Rapid Commun Mass Spectrom; 2007; 21(20):3269-78. PubMed ID: 17879394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]