BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 17525518)

  • 1. [Delivery of photosensitizers for photodynamic therapy].
    Park S
    Korean J Gastroenterol; 2007 May; 49(5):300-13. PubMed ID: 17525518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric micelles to deliver photosensitizers for photodynamic therapy.
    van Nostrum CF
    Adv Drug Deliv Rev; 2004 Jan; 56(1):9-16. PubMed ID: 14706442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved photodynamic cancer treatment by folate-conjugated polymeric micelles in a KB xenografted animal model.
    Syu WJ; Yu HP; Hsu CY; Rajan YC; Hsu YH; Chang YC; Hsieh WY; Wang CH; Lai PS
    Small; 2012 Jul; 8(13):2060-9. PubMed ID: 22508664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liposomal nanostructures for photosensitizer delivery.
    Jin CS; Zheng G
    Lasers Surg Med; 2011 Sep; 43(7):734-48. PubMed ID: 22057501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liposomes for photodynamic therapy.
    Derycke AS; de Witte PA
    Adv Drug Deliv Rev; 2004 Jan; 56(1):17-30. PubMed ID: 14706443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma membrane-anchorable photosensitizing nanomicelles for lipid raft-responsive and light-controllable intracellular drug delivery.
    Jia HR; Zhu YX; Xu KF; Liu X; Wu FG
    J Control Release; 2018 Sep; 286():103-113. PubMed ID: 30026079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy.
    Nishiyama N; Morimoto Y; Jang WD; Kataoka K
    Adv Drug Deliv Rev; 2009 Apr; 61(4):327-38. PubMed ID: 19385091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodynamic therapy - mechanisms, photosensitizers and combinations.
    Kwiatkowski S; Knap B; Przystupski D; Saczko J; Kędzierska E; Knap-Czop K; Kotlińska J; Michel O; Kotowski K; Kulbacka J
    Biomed Pharmacother; 2018 Oct; 106():1098-1107. PubMed ID: 30119176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy.
    Jia X; Jia L
    Curr Drug Metab; 2012 Oct; 13(8):1119-22. PubMed ID: 22380016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An insight on the role of photosensitizer nanocarriers for Photodynamic Therapy.
    Mesquita MQ; Dias CJ; Gamelas S; Fardilha M; Neves MGPMS; Faustino MAF
    An Acad Bras Cienc; 2018; 90(1 Suppl 2):1101-1130. PubMed ID: 29873674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-Soluble, Zwitterionic Poly-photosensitizers as Carrier-Free, Photosensitizer-Self-Delivery System for in Vivo Photodynamic Therapy.
    Zheng N; Xie D; Wang C; Zhang Z; Zheng Y; Lu Q; Bai Y; Li Y; Wang A; Song W
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44007-44017. PubMed ID: 31696699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State of the art in the delivery of photosensitizers for photodynamic therapy.
    Konan YN; Gurny R; Allémann E
    J Photochem Photobiol B; 2002 Mar; 66(2):89-106. PubMed ID: 11897509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer.
    Mokwena MG; Kruger CA; Ivan MT; Heidi A
    Photodiagnosis Photodyn Ther; 2018 Jun; 22():147-154. PubMed ID: 29588217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-engineered biocompatible polymeric nanophotosensitizer for locoregional photodynamic therapy of cancer.
    Jeong K; Park S; Lee YD; Kang CS; Kim HJ; Park H; Kwon IC; Kim J; Park CR; Kim S
    Colloids Surf B Biointerfaces; 2016 Aug; 144():303-310. PubMed ID: 27107384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticancer Efficacy of Photodynamic Therapy with Lung Cancer-Targeted Nanoparticles.
    Chang JE; Cho HJ; Jheon S
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 27929475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization-dependent cell-killing effects of protoporphyrin (PPIX)-lipid micelles and liposomes in photodynamic therapy.
    Tachikawa S; Sato S; Hazama H; Kaneda Y; Awazu K; Nakamura H
    Bioorg Med Chem; 2015 Dec; 23(24):7578-84. PubMed ID: 26602828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotechology-based strategies to enhance the efficacy of photodynamic therapy for cancers.
    Li WT
    Curr Drug Metab; 2009 Oct; 10(8):851-60. PubMed ID: 20214580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy.
    Muehlmann LA; Joanitti GA; Silva JR; Longo JP; Azevedo RB
    Braz J Med Biol Res; 2011 Aug; 44(8):729-37. PubMed ID: 21969965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo studies of nanostructure-based photosensitizers for photodynamic cancer therapy.
    Voon SH; Kiew LV; Lee HB; Lim SH; Noordin MI; Kamkaew A; Burgess K; Chung LY
    Small; 2014 Dec; 10(24):4993-5013. PubMed ID: 25164105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular "activated" two-photon photodynamic therapy by fluorescent conveyor and photosensitizer co-encapsulating pH-responsive micelles against breast cancer.
    Luo L; Zhong H; Liu S; Deng L; Luo Y; Zhang Q; Zhu Y; Tian Y; Sun Y; Tian X
    Int J Nanomedicine; 2017; 12():5189-5201. PubMed ID: 28860747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.