BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 17525933)

  • 1. Effect of metabolic inhibitors on ATP and citrate content in PC3 prostate cancer cells.
    Matheson BK; Adams JL; Zou J; Patel R; Franklin RB
    Prostate; 2007 Aug; 67(11):1211-8. PubMed ID: 17525933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testosterone and prolactin stimulation of mitochondrial aconitase in pig prostate epithelial cells.
    Costello LC; Liu Y; Franklin RB
    Urology; 1996 Oct; 48(4):654-9. PubMed ID: 8886079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues.
    Singh KK; Desouki MM; Franklin RB; Costello LC
    Mol Cancer; 2006 Apr; 5():14. PubMed ID: 16595004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of mitochondrial aconitase on the bioenergy of human prostate carcinoma cells.
    Juang HH
    Mol Genet Metab; 2004 Mar; 81(3):244-52. PubMed ID: 14972331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of potassium-magnesium citrate supplementation on cytosolic ATP citrate lyase and mitochondrial aconitase activity in leukocytes: a window on renal citrate metabolism.
    Tosukhowong P; Tungsanga K; Phongudom S; Sriboonlue P
    Int J Urol; 2005 Feb; 12(2):140-4. PubMed ID: 15733107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of zinc on SN56 cholinergic neuroblastoma cells.
    Ronowska A; Gul-Hinc S; Bielarczyk H; Pawełczyk T; Szutowicz A
    J Neurochem; 2007 Nov; 103(3):972-83. PubMed ID: 17662047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Studies of interaction of intracellular signalling and metabolic pathways under inhibition of mitochondrial aconitase with fluoroacetate].
    Zinchenko VP; Goncharov NV; Teplova VV; Kasymov VA; Petrova OI; Berezhnov AV; Senchenkov EV; Mindukshev IV; Jenkins RO; Radilov AS
    Tsitologiia; 2007; 49(12):1023-31. PubMed ID: 18318221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ifosfamide metabolite chloroacetaldehyde inhibits cell proliferation and glucose metabolism without decreasing cellular ATP content in human breast cancer cells MCF-7.
    Knouzy B; Dubourg L; Baverel G; Michoudet C
    J Appl Toxicol; 2010 Apr; 30(3):204-11. PubMed ID: 19774546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of normal differentiation of myeloid leukemic cells. X. Glucose utilization, cellular ATP and associated membrane changes in D+ and D- cells.
    Vlodavsky I; Fibach E; Sachs L
    J Cell Physiol; 1975 Dec; 87(2):167-77. PubMed ID: 1061711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aconitase activity, citrate oxidation, and zinc inhibition in rat ventral prostate.
    Costello LC; Franklin RB
    Enzyme; 1981; 26(6):281-7. PubMed ID: 7308179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate.
    Pereira da Silva AP; El-Bacha T; Kyaw N; dos Santos RS; da-Silva WS; Almeida FC; Da Poian AT; Galina A
    Biochem J; 2009 Feb; 417(3):717-26. PubMed ID: 18945211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells.
    Costello LC; Liu Y; Franklin RB; Kennedy MC
    J Biol Chem; 1997 Nov; 272(46):28875-81. PubMed ID: 9360955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of metabolic flux distributions for MDCK cell growth in glutamine- and pyruvate-containing media.
    Sidorenko Y; Wahl A; Dauner M; Genzel Y; Reichl U
    Biotechnol Prog; 2008; 24(2):311-20. PubMed ID: 18215054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proinflammatory cytokines increase the rate of glycolysis and adenosine-5'-triphosphate turnover in cultured rat enterocytes.
    Berg S; Sappington PL; Guzik LJ; Delude RL; Fink MP
    Crit Care Med; 2003 Apr; 31(4):1203-12. PubMed ID: 12682494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement.
    Mukai C; Okuno M
    Biol Reprod; 2004 Aug; 71(2):540-7. PubMed ID: 15084484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of methionine on glycolysis in tumor cells: in vivo and in vitro NMR studies.
    Collet V; Carrez D; Croisy A; Dimicoli JL
    NMR Biomed; 1996 Apr; 9(2):47-52. PubMed ID: 8887367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese antagonizes iron blocking mitochondrial aconitase expression in human prostate carcinoma cells.
    Tsui KH; Chang PL; Juang HH
    Asian J Androl; 2006 May; 8(3):307-15. PubMed ID: 16625280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isocitrate uptake and citrate production by rat ventral prostate fragments.
    Franklin RB; Costello LC
    Invest Urol; 1978 Jul; 16(1):44-7. PubMed ID: 689836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical anoxia delays germ cell apoptosis in the human testis.
    Erkkilä K; Suomalainen L; Wikström M; Parvinen M; Dunkel L
    Biol Reprod; 2003 Aug; 69(2):617-26. PubMed ID: 12700196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.