BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 17526562)

  • 1. Conformational dynamics in loop swap mutants of homologous fibronectin type III domains.
    Siggers K; Soto C; Palmer AG
    Biophys J; 2007 Oct; 93(7):2447-56. PubMed ID: 17526562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin.
    Carr PA; Erickson HP; Palmer AG
    Structure; 1997 Jul; 5(7):949-59. PubMed ID: 9261088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crosstalk between the protein surface and hydrophobic core in a core-swapped fibronectin type III domain.
    Billings KS; Best RB; Rutherford TJ; Clarke J
    J Mol Biol; 2008 Jan; 375(2):560-71. PubMed ID: 18035373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of the third fibronectin type III domain of human tenascin-C through minimal mutation and rational design.
    Gilbreth RN; Chacko BM; Grinberg L; Swers JS; Baca M
    Protein Eng Des Sel; 2014 Oct; 27(10):411-8. PubMed ID: 24996411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the potential of the monobody scaffold: effects of loop elongation on the stability of a fibronectin type III domain.
    Batori V; Koide A; Koide S
    Protein Eng; 2002 Dec; 15(12):1015-20. PubMed ID: 12601141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing an extracellular matrix protein with enhanced mechanical stability.
    Ng SP; Billings KS; Ohashi T; Allen MD; Best RB; Randles LG; Erickson HP; Clarke J
    Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9633-7. PubMed ID: 17535921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic core fluidity of homologous protein domains: relation of side-chain dynamics to core composition and packing.
    Best RB; Rutherford TJ; Freund SM; Clarke J
    Biochemistry; 2004 Feb; 43(5):1145-55. PubMed ID: 14756550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical design of the third FnIII domain of tenascin-C.
    Peng Q; Zhuang S; Wang M; Cao Y; Khor Y; Li H
    J Mol Biol; 2009 Mar; 386(5):1327-42. PubMed ID: 19452631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monobodies: antibody mimics based on the scaffold of the fibronectin type III domain.
    Koide A; Koide S
    Methods Mol Biol; 2007; 352():95-109. PubMed ID: 17041261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two proteins with the same structure respond very differently to mutation: the role of plasticity in protein stability.
    Cota E; Hamill SJ; Fowler SB; Clarke J
    J Mol Biol; 2000 Sep; 302(3):713-25. PubMed ID: 10986129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic partitioning mechanism governs the folding of the third FnIII domain of tenascin-C: evidence at the single-molecule level.
    Peng Q; Fang J; Wang M; Li H
    J Mol Biol; 2011 Sep; 412(4):698-709. PubMed ID: 21839747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical unfolding of TNfn3: the unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation.
    Ng SP; Rounsevell RW; Steward A; Geierhaas CD; Williams PM; Paci E; Clarke J
    J Mol Biol; 2005 Jul; 350(4):776-89. PubMed ID: 15964016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain.
    Akke M; Liu J; Cavanagh J; Erickson HP; Palmer AG
    Nat Struct Biol; 1998 Jan; 5(1):55-9. PubMed ID: 9437430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of boundary selection on the stability and folding of the third fibronectin type III domain from human tenascin.
    Hamill SJ; Meekhof AE; Clarke J
    Biochemistry; 1998 Jun; 37(22):8071-9. PubMed ID: 9609701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating the mechanical stability of extracellular matrix protein tenascin-C in a controlled and reversible fashion.
    Zhuang S; Peng Q; Cao Y; Li H
    J Mol Biol; 2009 Jul; 390(4):820-9. PubMed ID: 19477181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold.
    Cota E; Steward A; Fowler SB; Clarke J
    J Mol Biol; 2001 Feb; 305(5):1185-94. PubMed ID: 11162123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into fibronectin type III domain-mediated signaling.
    Bencharit S; Cui CB; Siddiqui A; Howard-Williams EL; Sondek J; Zuobi-Hasona K; Aukhil I
    J Mol Biol; 2007 Mar; 367(2):303-9. PubMed ID: 17261313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-affinity fragment complementation of a fibronectin type III domain and its application to stability enhancement.
    Dutta S; Batori V; Koide A; Koide S
    Protein Sci; 2005 Nov; 14(11):2838-48. PubMed ID: 16199661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of novel FN3 domains with high stability by a consensus sequence approach.
    Jacobs SA; Diem MD; Luo J; Teplyakov A; Obmolova G; Malia T; Gilliland GL; O'Neil KT
    Protein Eng Des Sel; 2012 Mar; 25(3):107-17. PubMed ID: 22240293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence and context dependence of EF-hand loop dynamics. An 15N relaxation study of a calcium-binding site mutant of calbindin D9k.
    Malmendal A; Carlstrom G; Hambraeus C; Drakenberg T; Forsen S; Akke M
    Biochemistry; 1998 Feb; 37(8):2586-95. PubMed ID: 9485409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.