These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 17526572)

  • 1. Antifreeze proteins at the ice/water interface: three calculated discriminating properties for orientation of type I proteins.
    Wierzbicki A; Dalal P; Cheatham TE; Knickelbein JE; Haymet AD; Madura JD
    Biophys J; 2007 Sep; 93(5):1442-51. PubMed ID: 17526572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of antifreeze proteins on the ice/water interface.
    Todde G; Hovmöller S; Laaksonen A
    J Phys Chem B; 2015 Feb; 119(8):3407-13. PubMed ID: 25611783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of interaction of winter flounder antifreeze protein with ice.
    Jorov A; Zhorov BS; Yang DS
    Protein Sci; 2004 Jun; 13(6):1524-37. PubMed ID: 15152087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biological function of an insect antifreeze protein simulated by molecular dynamics.
    Kuiper MJ; Morton CJ; Abraham SE; Gray-Weale A
    Elife; 2015 May; 4():. PubMed ID: 25951514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice-binding mechanism of winter flounder antifreeze proteins.
    Cheng A; Merz KM
    Biophys J; 1997 Dec; 73(6):2851-73. PubMed ID: 9414201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induced ice melting by the snow flea antifreeze protein from molecular dynamics simulations.
    Todde G; Whitman C; Hovmöller S; Laaksonen A
    J Phys Chem B; 2014 Nov; 118(47):13527-34. PubMed ID: 25353109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of ice-like water structure on the surface of an antifreeze protein.
    Smolin N; Daggett V
    J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth inhibition mechanism of an ice-water interface by a mutant of winter flounder antifreeze protein: a molecular dynamics study.
    Nada H; Furukawa Y
    J Phys Chem B; 2008 Jun; 112(23):7111-9. PubMed ID: 18476736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein.
    Chakraborty S; Jana B
    J Phys Chem B; 2018 Mar; 122(12):3056-3067. PubMed ID: 29510055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Will It Be Beneficial To Simulate the Antifreeze Proteins at Ice Freezing Condition or at Lower Temperature?
    Kar RK; Bhunia A
    J Phys Chem B; 2015 Sep; 119(35):11485-95. PubMed ID: 26287639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice.
    Hudait A; Qiu Y; Odendahl N; Molinero V
    J Am Chem Soc; 2019 May; 141(19):7887-7898. PubMed ID: 31020830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight.
    Chakraborty S; Jana B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular structure of a hyperactive antifreeze protein adsorbed to ice.
    Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ
    J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why ice-binding type I antifreeze protein acts as a gas hydrate crystal inhibitor.
    Bagherzadeh SA; Alavi S; Ripmeester JA; Englezos P
    Phys Chem Chem Phys; 2015 Apr; 17(15):9984-90. PubMed ID: 25786071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for binding of an antifreeze polypeptide to ice.
    Wen D; Laursen RA
    Biophys J; 1992 Dec; 63(6):1659-62. PubMed ID: 1489916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifreeze protein from shorthorn sculpin: identification of the ice-binding surface.
    Baardsnes J; Jelokhani-Niaraki M; Kondejewski LH; Kuiper MJ; Kay CM; Hodges RS; Davies PL
    Protein Sci; 2001 Dec; 10(12):2566-76. PubMed ID: 11714925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local water dynamics around antifreeze protein residues in the presence of osmolytes: the importance of hydroxyl and disaccharide groups.
    Krishnamoorthy AN; Holm C; Smiatek J
    J Phys Chem B; 2014 Oct; 118(40):11613-21. PubMed ID: 25207443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-optimized structure of antifreeze protein and its binding mechanism.
    Chou KC
    J Mol Biol; 1992 Jan; 223(2):509-17. PubMed ID: 1738160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.