BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 17526795)

  • 61. Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707.
    Klotz MG; Arp DJ; Chain PS; El-Sheikh AF; Hauser LJ; Hommes NG; Larimer FW; Malfatti SA; Norton JM; Poret-Peterson AT; Vergez LM; Ward BB
    Appl Environ Microbiol; 2006 Sep; 72(9):6299-315. PubMed ID: 16957257
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica.
    Prabagaran SR; Manorama R; Delille D; Shivaji S
    FEMS Microbiol Ecol; 2007 Feb; 59(2):342-55. PubMed ID: 17026513
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria.
    Reisch CR; Stoudemayer MJ; Varaljay VA; Amster IJ; Moran MA; Whitman WB
    Nature; 2011 May; 473(7346):208-11. PubMed ID: 21562561
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates.
    Brinkhoff T; Bach G; Heidorn T; Liang L; Schlingloff A; Simon M
    Appl Environ Microbiol; 2004 Apr; 70(4):2560-5. PubMed ID: 15066861
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparative sequence analysis and oligonucleotide probe design based on 23S rRNA genes of Alphaproteobacteria from North Sea bacterioplankton.
    Peplies J; Glöckner FO; Amann R; Ludwig W
    Syst Appl Microbiol; 2004 Sep; 27(5):573-80. PubMed ID: 15490559
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Distribution of Roseobacter RCA and SAR11 lineages and distinct bacterial communities from the subtropics to the Southern Ocean.
    Giebel HA; Brinkhoff T; Zwisler W; Selje N; Simon M
    Environ Microbiol; 2009 Aug; 11(8):2164-78. PubMed ID: 19689707
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Changes in bacterioplankton composition under different phytoplankton regimens.
    Pinhassi J; Sala MM; Havskum H; Peters F; Guadayol O; Malits A; Marrasé C
    Appl Environ Microbiol; 2004 Nov; 70(11):6753-66. PubMed ID: 15528542
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mechanisms driving genome reduction of a novel Roseobacter lineage.
    Feng X; Chu X; Qian Y; Henson MW; Lanclos VC; Qin F; Barnes S; Zhao Y; Thrash JC; Luo H
    ISME J; 2021 Dec; 15(12):3576-3586. PubMed ID: 34145391
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The marine bacterium Phaeobacter inhibens secures external ammonium by rapid buildup of intracellular nitrogen stocks.
    Trautwein K; Hensler M; Wiegmann K; Skorubskaya E; Wöhlbrand L; Wünsch D; Hinrichs C; Feenders C; Müller C; Schell K; Ruppersberg H; Vagts J; Koßmehl S; Steinbüchel A; Schmidt-Kopplin P; Wilkes H; Hillebrand H; Blasius B; Schomburg D; Rabus R
    FEMS Microbiol Ecol; 2018 Oct; 94(10):. PubMed ID: 30124819
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Environmental biology of the marine Roseobacter lineage.
    Wagner-Döbler I; Biebl H
    Annu Rev Microbiol; 2006; 60():255-80. PubMed ID: 16719716
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome.
    Durham BP; Grote J; Whittaker KA; Bender SJ; Luo H; Grim SL; Brown JM; Casey JR; Dron A; Florez-Leiva L; Krupke A; Luria CM; Mine AH; Nigro OD; Pather S; Talarmin A; Wear EK; Weber TS; Wilson JM; Church MJ; DeLong EF; Karl DM; Steward GF; Eppley JM; Kyrpides NC; Schuster S; Rappé MS
    Stand Genomic Sci; 2014 Jun; 9(3):632-45. PubMed ID: 25197450
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Simultaneous catabolism of plant-derived aromatic compounds results in enhanced growth for members of the Roseobacter lineage.
    Gulvik CA; Buchan A
    Appl Environ Microbiol; 2013 Jun; 79(12):3716-23. PubMed ID: 23563956
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pathways and substrate-specific regulation of amino acid degradation in Phaeobacter inhibens DSM 17395 (archetype of the marine Roseobacter clade).
    Drüppel K; Hensler M; Trautwein K; Koßmehl S; Wöhlbrand L; Schmidt-Hohagen K; Ulbrich M; Bergen N; Meier-Kolthoff JP; Göker M; Klenk HP; Schomburg D; Rabus R
    Environ Microbiol; 2014 Jan; 16(1):218-38. PubMed ID: 24165547
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Genomic, physiologic, and proteomic insights into metabolic versatility in Roseobacter clade bacteria isolated from deep-sea water.
    Tang K; Yang Y; Lin D; Li S; Zhou W; Han Y; Liu K; Jiao N
    Sci Rep; 2016 Oct; 6():35528. PubMed ID: 27762339
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Tritium and Carbon-14 Contamination Reshaping the Microbial Community Structure, Metabolic Network, and Element Cycle in the Seawater Environment.
    Lai JL; Li ZG; Wang Y; Xi HL; Luo XG
    Environ Sci Technol; 2023 Apr; 57(13):5305-5316. PubMed ID: 36952228
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Amino Acid and Sugar Catabolism in the Marine Bacterium Phaeobacter inhibens DSM 17395 from an Energetic Viewpoint.
    Wünsch D; Trautwein K; Scheve S; Hinrichs C; Feenders C; Blasius B; Schomburg D; Rabus R
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604772
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparative proteogenomics of twelve Roseobacter exoproteomes reveals different adaptive strategies among these marine bacteria.
    Christie-Oleza JA; Piña-Villalonga JM; Bosch R; Nogales B; Armengaud J
    Mol Cell Proteomics; 2012 Feb; 11(2):M111.013110. PubMed ID: 22122883
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria.
    Shao X; Cao HY; Zhao F; Peng M; Wang P; Li CY; Shi WL; Wei TD; Yuan Z; Zhang XH; Chen XL; Todd JD; Zhang YZ
    Mol Microbiol; 2019 Apr; 111(4):1057-1073. PubMed ID: 30677184
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Carbon limitation drives GC content evolution of a marine bacterium in an individual-based genome-scale model.
    Hellweger FL; Huang Y; Luo H
    ISME J; 2018 May; 12(5):1180-1187. PubMed ID: 29330536
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A mechanism for bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic sulfur cycle.
    Lidbury I; Kröber E; Zhang Z; Zhu Y; Murrell JC; Chen Y; Schäfer H
    Environ Microbiol; 2016 Sep; 18(8):2754-66. PubMed ID: 27114231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.