These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1752865)

  • 1. The viscoelastic responses of the human cervical spine in torsion: experimental limitations of quasi-linear theory, and a method for reducing these effects.
    Myers BS; McElhaney JH; Doherty BJ
    J Biomech; 1991; 24(9):811-7. PubMed ID: 1752865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior.
    Troyer KL; Puttlitz CM
    Acta Biomater; 2011 Feb; 7(2):700-9. PubMed ID: 20831909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Static and dynamic bending responses of the human cervical spine.
    Voo LM; Pintar FA; Yoganandan N; Liu YK
    J Biomech Eng; 1998 Dec; 120(6):693-6. PubMed ID: 10412450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower Cervical Spine Motion Segment Computational Model Validation: Kinematic and Kinetic Response for Quasi-Static and Dynamic Loading.
    Barker JB; Cronin DS; Nightingale RW
    J Biomech Eng; 2017 Jun; 139(6):. PubMed ID: 28418508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.
    Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W
    Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biomechanical modeling of the cervical spine on the basis of tomographic data].
    Seifert S; Dillmann R
    Biomed Tech (Berl); 2007 Oct; 52(5):337-45. PubMed ID: 17915995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical assessment of the pediatric cervical spine under bending and tensile loading.
    Ouyang J; Zhu Q; Zhao W; Xu Y; Chen W; Zhong S
    Spine (Phila Pa 1976); 2005 Dec; 30(24):E716-23. PubMed ID: 16371888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study on dynamic stiffness in typical finite element model and multi-body model of C6-C7 cervical spine segment.
    Wang Y; Wang L; Du C; Mo Z; Fan Y
    Int J Numer Method Biomed Eng; 2016 Jun; 32(6):. PubMed ID: 26466546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory.
    Abramowitch SD; Woo SL
    J Biomech Eng; 2004 Feb; 126(1):92-7. PubMed ID: 15171134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical testing simulation of a cadaver spine specimen: development and evaluation study.
    Ahn HS; DiAngelo DJ
    Spine (Phila Pa 1976); 2007 May; 32(11):E330-6. PubMed ID: 17495766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear viscoelasticty plays an essential role in the functional behavior of spinal ligaments.
    Troyer KL; Puttlitz CM
    J Biomech; 2012 Feb; 45(4):684-91. PubMed ID: 22236525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue responses of the human cervical spine intervertebral discs.
    Yoganandan N; Umale S; Stemper B; Snyder B
    J Mech Behav Biomed Mater; 2017 May; 69():30-38. PubMed ID: 28033533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic cervical plates: biomechanical evaluation of load sharing and stiffness.
    Brodke DS; Gollogly S; Alexander Mohr R; Nguyen BK; Dailey AT; Bachus aK
    Spine (Phila Pa 1976); 2001 Jun; 26(12):1324-9. PubMed ID: 11426146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study.
    Kandziora F; Pflugmacher R; Scholz M; Schnake K; Lucke M; Schröder R; Mittlmeier T
    Spine (Phila Pa 1976); 2001 May; 26(9):1028-37. PubMed ID: 11337621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical comparison of the dewar and interspinous cervical spine fixation techniques.
    Simmons ED; Burke TG; Haley T; Medige J
    Spine (Phila Pa 1976); 1996 Feb; 21(3):295-8; discussion 299. PubMed ID: 8742204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cervical spine models for biomechanical research.
    Panjabi MM
    Spine (Phila Pa 1976); 1998 Dec; 23(24):2684-700. PubMed ID: 9879095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and prediction of rate-dependent flexibility in lumbar spine biomechanics at room and body temperature.
    Stolworthy DK; Zirbel SA; Howell LL; Samuels M; Bowden AE
    Spine J; 2014 May; 14(5):789-98. PubMed ID: 24290312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.