These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 1752867)
1. Application of homogenization theory to the study of trabecular bone mechanics. Hollister SJ; Fyhrie DP; Jepsen KJ; Goldstein SA J Biomech; 1991; 24(9):825-39. PubMed ID: 1752867 [TBL] [Abstract][Full Text] [Related]
2. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. Hollister SJ; Brennan JM; Kikuchi N J Biomech; 1994 Apr; 27(4):433-44. PubMed ID: 8188724 [TBL] [Abstract][Full Text] [Related]
3. The role of fabric in the large strain compressive behavior of human trabecular bone. Charlebois M; Pretterklieber M; Zysset PK J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320 [TBL] [Abstract][Full Text] [Related]
5. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. Vaughan TJ; McCarthy CT; McNamara LM J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366 [TBL] [Abstract][Full Text] [Related]
6. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis. Goossens L; Vanderoost J; Jaecques S; Boonen S; D'hooge J; Lauriks W; Van der Perre G IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1234-42. PubMed ID: 18599411 [TBL] [Abstract][Full Text] [Related]
7. Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation. Haïat G; Padilla F; Peyrin F; Laugier P J Bone Miner Res; 2007 May; 22(5):665-74. PubMed ID: 17295606 [TBL] [Abstract][Full Text] [Related]
8. Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. Adachi T; Tsubota K; Tomita Y; Hollister SJ J Biomech Eng; 2001 Oct; 123(5):403-9. PubMed ID: 11601724 [TBL] [Abstract][Full Text] [Related]
9. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor. Musy SN; Maquer G; Panyasantisuk J; Wandel J; Zysset PK J Mech Behav Biomed Mater; 2017 Jan; 65():808-813. PubMed ID: 27788473 [TBL] [Abstract][Full Text] [Related]
10. X-ray-verified fractures are associated with finite element analysis-derived bone strength and trabecular microstructure in young adult men. Rudäng R; Darelid A; Nilsson M; Mellström D; Ohlsson C; Lorentzon M J Bone Miner Res; 2013 Nov; 28(11):2305-16. PubMed ID: 23658040 [TBL] [Abstract][Full Text] [Related]
11. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bevill G; Eswaran SK; Gupta A; Papadopoulos P; Keaveny TM Bone; 2006 Dec; 39(6):1218-25. PubMed ID: 16904959 [TBL] [Abstract][Full Text] [Related]
12. Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells. Kowalczyk P J Biomech; 2003 Jul; 36(7):961-72. PubMed ID: 12757805 [TBL] [Abstract][Full Text] [Related]
14. Orthotropic properties of cancellous bone modelled as parameterized cellular material. Kowalczyk P Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164 [TBL] [Abstract][Full Text] [Related]
15. Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Arguments from a multiscale approach. Hellmich C; Ulm FJ; Dormieux L Biomech Model Mechanobiol; 2004 Jun; 2(4):219-38. PubMed ID: 15054639 [TBL] [Abstract][Full Text] [Related]
16. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. Stauber M; Rapillard L; van Lenthe GH; Zysset P; Müller R J Bone Miner Res; 2006 Apr; 21(4):586-95. PubMed ID: 16598379 [TBL] [Abstract][Full Text] [Related]
17. Determination of material constants and hydraulic strengthening of trabecular bone through an orthotropic structural model. Deligianni DD; Missirlis YF; Kafka V Biorheology; 1994; 31(3):245-57. PubMed ID: 8729485 [TBL] [Abstract][Full Text] [Related]
18. A uniform strain criterion for trabecular bone adaptation: do continuum-level strain gradients drive adaptation? Turner CH; Anne V; Pidaparti RM J Biomech; 1997 Jun; 30(6):555-63. PubMed ID: 9165388 [TBL] [Abstract][Full Text] [Related]
19. A microstructural finite element simulation of mechanically induced bone formation. Koontz JT; Charras GT; Guldberg RE J Biomech Eng; 2001 Dec; 123(6):607-12. PubMed ID: 11783732 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. Ciarelli MJ; Goldstein SA; Kuhn JL; Cody DD; Brown MB J Orthop Res; 1991 Sep; 9(5):674-82. PubMed ID: 1870031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]