These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 17529968)
1. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Peet J; Kim JY; Coates NE; Ma WL; Moses D; Heeger AJ; Bazan GC Nat Mater; 2007 Jul; 6(7):497-500. PubMed ID: 17529968 [TBL] [Abstract][Full Text] [Related]
2. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Wong WY; Wang XZ; He Z; Djurisić AB; Yip CT; Cheung KY; Wang H; Mak CS; Chan WK Nat Mater; 2007 Jul; 6(7):521-7. PubMed ID: 17496897 [TBL] [Abstract][Full Text] [Related]
5. Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Potscavage WJ; Sharma A; Kippelen B Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653 [TBL] [Abstract][Full Text] [Related]
6. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Heremans P; Cheyns D; Rand BP Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055 [TBL] [Abstract][Full Text] [Related]
7. Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell. Guo J; Liang Y; Szarko J; Lee B; Son HJ; Rolczynski BS; Yu L; Chen LX J Phys Chem B; 2010 Jan; 114(2):742-8. PubMed ID: 20038154 [TBL] [Abstract][Full Text] [Related]
8. Polymer nanowire/fullerene bulk heterojunction solar cells: how nanostructure determines photovoltaic properties. Xin H; Reid OG; Ren G; Kim FS; Ginger DS; Jenekhe SA ACS Nano; 2010 Apr; 4(4):1861-72. PubMed ID: 20222697 [TBL] [Abstract][Full Text] [Related]
10. Morphology control of a polythiophene-fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor-acceptor diblock copolymer. Lee JU; Jung JW; Emrick T; Russell TP; Jo WH Nanotechnology; 2010 Mar; 21(10):105201. PubMed ID: 20154377 [TBL] [Abstract][Full Text] [Related]
11. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Chen J; Cao Y Acc Chem Res; 2009 Nov; 42(11):1709-18. PubMed ID: 19572607 [TBL] [Abstract][Full Text] [Related]
12. Molecular bulk heterojunctions: an emerging approach to organic solar cells. Roncali J Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313 [TBL] [Abstract][Full Text] [Related]
13. Efficient tandem polymer solar cells fabricated by all-solution processing. Kim JY; Lee K; Coates NE; Moses D; Nguyen TQ; Dante M; Heeger AJ Science; 2007 Jul; 317(5835):222-5. PubMed ID: 17626879 [TBL] [Abstract][Full Text] [Related]
14. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells. Chen CP; Chan SH; Chao TC; Ting C; Ko BT J Am Chem Soc; 2008 Sep; 130(38):12828-33. PubMed ID: 18759400 [TBL] [Abstract][Full Text] [Related]
15. Polymer-fullerene composite solar cells. Thompson BC; Fréchet JM Angew Chem Int Ed Engl; 2008; 47(1):58-77. PubMed ID: 18041798 [TBL] [Abstract][Full Text] [Related]
16. Highly efficient solar cells based on poly(3-butylthiophene) nanowires. Xin H; Kim FS; Jenekhe SA J Am Chem Soc; 2008 Apr; 130(16):5424-5. PubMed ID: 18376831 [TBL] [Abstract][Full Text] [Related]