BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17530454)

  • 21. Sagittal balance in adolescent idiopathic scoliosis: radiographic study of spino-pelvic compensation after surgery.
    La Maida GA; Zottarelli L; Mineo GV; Misaggi B
    Eur Spine J; 2013 Nov; 22 Suppl 6(Suppl 6):S859-67. PubMed ID: 24061971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional morphology study of surgical adolescent idiopathic scoliosis patient from encoded geometric models.
    Thong W; Parent S; Wu J; Aubin CE; Labelle H; Kadoury S
    Eur Spine J; 2016 Oct; 25(10):3104-3113. PubMed ID: 26851954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconstruction of laser-scanned 3D torso topography and stereoradiographical spine and rib-cage geometry in scoliosis.
    Poncet P; Delorme S; Ronsky JL; Dansereau J; Clynch G; Harder J; Dewar RD; Labelle H; Gu PH; Zernicke RF
    Comput Methods Biomech Biomed Engin; 2000; 4(1):59-75. PubMed ID: 11264861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global geometric torsion estimation in adolescent idiopathic scoliosis.
    Kadoury S; Shen J; Parent S
    Med Biol Eng Comput; 2014 Apr; 52(4):309-19. PubMed ID: 24370854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of scoliosis measurements based on three-dimensional vertebra vectors and conventional two-dimensional measurements: advantages in evaluation of prognosis and surgical results.
    Illés T; Somoskeöy S
    Eur Spine J; 2013 Jun; 22(6):1255-63. PubMed ID: 23341044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification of three-dimensional thoracic deformities in adolescent idiopathic scoliosis from a multivariate analysis.
    Kadoury S; Labelle H
    Eur Spine J; 2012 Jan; 21(1):40-9. PubMed ID: 21879413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel system for thE 3-D reconstruction of the human spine and rib cage from biplanar X-ray images.
    Cheriet F; Laporte C; Kadoury S; Labelle H; Dansereau J
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1356-8. PubMed ID: 17605369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Reconstruction of Scoliotic Spines from Stereoradiography and Depth Imaging.
    Groisser B; Kimmel R; Feldman G; Rozen N; Wolf A
    Ann Biomed Eng; 2018 Aug; 46(8):1206-1215. PubMed ID: 29687237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical simulation and analysis of scoliosis correction using a fusionless intravertebral epiphyseal device.
    Clin J; Aubin CÉ; Parent S
    Spine (Phila Pa 1976); 2015 Mar; 40(6):369-76. PubMed ID: 25584943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterizing the differences between the 2D and 3D measurements of spine in adolescent idiopathic scoliosis.
    Pasha S; Cahill PJ; Dormans JP; Flynn JM
    Eur Spine J; 2016 Oct; 25(10):3137-3145. PubMed ID: 27146809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Perioperative radiographic reconstruction of the scoliotic vertebral column].
    Cheriet F; Delorme S; Dansereau J; Aubin CE; de Guise JA; Labelle H
    Ann Chir; 1999; 53(8):808-15. PubMed ID: 10584393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simplified calibration system for stereoradiography in scoliosis.
    Mitton D; Dumas R; Laporte S; le Borgne P; Bataille P; Quidet D; Skalli W
    Stud Health Technol Inform; 2002; 88():144-8. PubMed ID: 15456020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The correlation comparison of vertebral axial rotation relative to curvature and torsion in scoliosis by simplified 3D spine model.
    Lin H
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1517-20. PubMed ID: 17945649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Considerations in sagittal evaluation of the scoliotic spine.
    Pasha S; Ecker M; Deeney V
    Eur J Orthop Surg Traumatol; 2018 Aug; 28(6):1039-1045. PubMed ID: 29541842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Predictive Model of Progression for Adolescent Idiopathic Scoliosis Based on 3D Spine Parameters at First Visit.
    Nault ML; Beauséjour M; Roy-Beaudry M; Mac-Thiong JM; de Guise J; Labelle H; Parent S
    Spine (Phila Pa 1976); 2020 May; 45(9):605-611. PubMed ID: 31703055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of the 3-d reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images.
    Delorme S; Petit Y; de Guise JA; Labelle H; Aubin CE; Dansereau J
    IEEE Trans Biomed Eng; 2003 Aug; 50(8):989-98. PubMed ID: 12892326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Simulation of lateral bending tests using a musculoskeletal model of the trunk].
    Beauséjour M; Aubin CE; Feldman AG; Labelle H
    Ann Chir; 1999; 53(8):742-50. PubMed ID: 10584386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving Visibility of Stereo-Radiographic Spine Reconstruction with Geometric Inferences.
    Kumar S; Nayak KP; Hareesha KS
    J Digit Imaging; 2016 Apr; 29(2):226-34. PubMed ID: 26537930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images.
    Pinheiro AP; Coelho JC; Veiga ACP; Vrtovec T
    Comput Methods Programs Biomed; 2018 Jul; 161():85-92. PubMed ID: 29852970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of spinal curvature parameters as determined by the ZEBRIS spine examination method and the Cobb method in children with scoliosis.
    Takács M; Orlovits Z; Jáger B; Kiss RM
    PLoS One; 2018; 13(7):e0200245. PubMed ID: 29985957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.