These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 17530632)

  • 1. Tissue response in the rat and the mouse to degradable dextran hydrogels.
    De Jong WH; Dormans JA; Van Steenbergen MJ; Verharen HW; Hennink WE
    J Biomed Mater Res A; 2007 Nov; 83(2):538-45. PubMed ID: 17530632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo biocompatibility of dextran-based hydrogels.
    Cadée JA; van Luyn MJ; Brouwer LA; Plantinga JA; van Wachem PB; de Groot CJ; den Otter W; Hennink WE
    J Biomed Mater Res; 2000 Jun; 50(3):397-404. PubMed ID: 10737882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue response to partially in vitro predegraded poly-L-lactide implants.
    De Jong WH; Eelco Bergsma J; Robinson JE; Bos RR
    Biomaterials; 2005 May; 26(14):1781-91. PubMed ID: 15576152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of recombinant human interleukin-2 from dextran-based hydrogels.
    Cadée JA; de Groot CJ; Jiskoot W; den Otter W; Hennink WE
    J Control Release; 2002 Jan; 78(1-3):1-13. PubMed ID: 11772444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocatalytic synthesis of highly ordered degradable dextran-based hydrogels.
    Ferreira L; Gil MH; Cabrita AM; Dordick JS
    Biomaterials; 2005 Aug; 26(23):4707-16. PubMed ID: 15763250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue reactions of in situ formed dextran hydrogels crosslinked by stereocomplex formation after subcutaneous implantation in rats.
    Bos GW; Hennink WE; Brouwer LA; den Otter W; Veldhuis TF; van Nostrum CF; van Luyn MJ
    Biomaterials; 2005 Jun; 26(18):3901-9. PubMed ID: 15626437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels.
    Ferreira L; Rafael A; Lamghari M; Barbosa MA; Gil MH; Cabrita AM; Dordick JS
    J Biomed Mater Res A; 2004 Mar; 68(3):584-96. PubMed ID: 14762939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring the swelling pressure of degrading dextran hydroxyethyl methacrylate hydrogels.
    Stubbe BG; Horkay F; Amsden B; Hennink WE; De Smedt SC; Demeester J
    Biomacromolecules; 2003; 4(3):691-5. PubMed ID: 12741786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 5: hydrolytically degradable materials.
    Prádný M; Michálek J; Lesný P; Hejcl A; Vacík J; Slouf M; Syková E
    J Mater Sci Mater Med; 2006 Dec; 17(12):1357-64. PubMed ID: 17143768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres.
    Franssen O; Vandervennet L; Roders P; Hennink WE
    J Control Release; 1999 Aug; 60(2-3):211-21. PubMed ID: 10425327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility evaluation of crosslinked chitosan hydrogels after subcutaneous and intraperitoneal implantation in the rat.
    Azab AK; Doviner V; Orkin B; Kleinstern J; Srebnik M; Nissan A; Rubinstein A
    J Biomed Mater Res A; 2007 Nov; 83(2):414-22. PubMed ID: 17455216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts.
    De Groot CJ; Van Luyn MJ; Van Dijk-Wolthuis WN; Cadée JA; Plantinga JA; Den Otter W; Hennink WE
    Biomaterials; 2001 Jun; 22(11):1197-203. PubMed ID: 11336291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of polysaccharide composition on the biocompatibility of pullulan/dextran-based hydrogels.
    Abed A; Assoul N; Ba M; Derkaoui SM; Portes P; Louedec L; Flaud P; Bataille I; Letourneur D; Meddahi-Pellé A
    J Biomed Mater Res A; 2011 Mar; 96(3):535-42. PubMed ID: 21254385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunocompatibility evaluation of hydrogel-coated polyimide implants for applications in regenerative medicine.
    Sirova M; Van Vlierberghe S; Matyasova V; Rossmann P; Schacht E; Dubruel P; Rihova B
    J Biomed Mater Res A; 2014 Jun; 102(6):1982-90. PubMed ID: 23852806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo biocompatibility of collagen-poly(hydroxyethyl methacrylate) hydrogels.
    Jeyanthi R; Rao KP
    Biomaterials; 1990 May; 11(4):238-43. PubMed ID: 2200533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tissue response to photopolymerized PEG-p(HPMAm-lactate)-based hydrogels.
    Censi R; van Putten S; Vermonden T; di Martino P; van Nostrum CF; Harmsen MC; Bank RA; Hennink WE
    J Biomed Mater Res A; 2011 Jun; 97(3):219-29. PubMed ID: 21442723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of composition of interpenetrating polymer network hydrogels based on poly(acrylic acid) and gelatin on tissue response: a quantitative in vivo study.
    Burugapalli K; Koul V; Dinda AK
    J Biomed Mater Res A; 2004 Feb; 68(2):210-8. PubMed ID: 14704962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of free chains on the swelling pressure of PEG-HEMA and dex-HEMA hydrogels.
    Van Thienen TG; Horkay F; Braeckmans K; Stubbe BG; Demeester J; De Smedt SC
    Int J Pharm; 2007 Jun; 337(1-2):31-9. PubMed ID: 17229536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility of steroid-HA delivery system using adult castrated rams as a model.
    Benghuzzi H; England B
    Biomed Sci Instrum; 2001; 37():275-80. PubMed ID: 11347402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.