BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17530635)

  • 1. Modified polycarbonate urethane: synthesis, properties and biological investigation in vitro.
    Szelest-Lewandowska A; Masiulanis B; Szymonowicz M; Pielka S; Paluch D
    J Biomed Mater Res A; 2007 Aug; 82(2):509-20. PubMed ID: 17530635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of shape-memory poly carbonate urethane microspheres for future vascular embolization.
    Liu R; Dai H; Zhou Q; Zhang Q; Zhang P
    J Biomater Sci Polym Ed; 2016 Aug; 27(12):1248-61. PubMed ID: 27193120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced biocompatibility in biostable poly(carbonate)urethane.
    Hsu SH; Kao YC; Lin ZC
    Macromol Biosci; 2004 Apr; 4(4):464-70. PubMed ID: 15468239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization, mechanical properties, and in vitro cytocompatibility evaluation of fibrous polycarbonate urethane membranes for biomedical applications.
    Arjun GN; Ramesh P
    J Biomed Mater Res A; 2012 Nov; 100(11):3042-50. PubMed ID: 22707288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Synthesis, characterization and blood compatibility studies of biomedical aliphatic polyurethanes].
    Du M; Li J; Wei Y; Xie X; He C; Fan C; Zhong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Jun; 20(2):273-6. PubMed ID: 12856596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies.
    Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility and biostability of a series of poly(carbonate)urethanes.
    Hsu SH; Lin ZC
    Colloids Surf B Biointerfaces; 2004 Jul; 36(1):1-12. PubMed ID: 15261017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of fluorocarbon chain end-capped poly(carbonate urethane)s as biomaterials: a novel bilayered surface structure.
    Xie X; Tan H; Li J; Zhong Y
    J Biomed Mater Res A; 2008 Jan; 84(1):30-43. PubMed ID: 17600322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro stability of polyether and polycarbonate urethanes.
    Tanzi MC; Farè S; Petrini P
    J Biomater Appl; 2000 Apr; 14(4):325-48. PubMed ID: 10794506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The human macrophage response during differentiation and biodegradation on polycarbonate-based polyurethanes: dependence on hard segment chemistry.
    Labow RS; Sa D; Matheson LA; Dinnes DL; Santerre JP
    Biomaterials; 2005 Dec; 26(35):7357-66. PubMed ID: 16005062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalization of polycarbonate surfaces by grafting PEG and zwitterionic polymers with a multicomb structure.
    Yang J; Lv J; Behl M; Lendlein A; Yang D; Zhang L; Shi C; Guo J; Feng Y
    Macromol Biosci; 2013 Dec; 13(12):1681-8. PubMed ID: 24106003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell attachment and proliferation on poly(carbonate urethanes) with various degrees of nanophase separation.
    Hsu SH; Kao YC
    Macromol Biosci; 2004 Sep; 4(9):891-900. PubMed ID: 15468298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and physical characterization of a novel poly(carbonate urea) urethane surface with protein crosslinker sites.
    Phaneuf MD; Quist WC; LoGerfo FW; Szycher M; Dempsey DJ; Bide MJ
    J Biomater Appl; 1997 Oct; 12(2):100-20. PubMed ID: 9399137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation.
    Khang D; Park GE; Webster TJ
    J Biomed Mater Res A; 2008 Jul; 86(1):253-60. PubMed ID: 18186050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization.
    Chen Z; Cheng S; Li Z; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(10):1451-71. PubMed ID: 19622282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations.
    Christenson EM; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Aug; 70(2):245-55. PubMed ID: 15227669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable shape-memory block co-polymers for fast self-expandable stents.
    Xue L; Dai S; Li Z
    Biomaterials; 2010 Nov; 31(32):8132-40. PubMed ID: 20723973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.