These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17530853)

  • 21. Synthetic analogues and reaction systems relevant to the molybdenum and tungsten oxotransferases.
    Enemark JH; Cooney JJ; Wang JJ; Holm RH
    Chem Rev; 2004 Feb; 104(2):1175-200. PubMed ID: 14871153
    [No Abstract]   [Full Text] [Related]  

  • 22. Correlating C-H bond cleavage with molybdenum reduction in xanthine oxidase.
    Kirk ML; Berhane A
    Chem Biodivers; 2012 Sep; 9(9):1756-60. PubMed ID: 22976967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox behavior of molybdenum and tungsten in phosphate glasses.
    Poirier G; Ottoboni FS; Cassanjes FC; Remonte A; Messaddeq Y; Ribeiro SJ
    J Phys Chem B; 2008 Apr; 112(15):4481-7. PubMed ID: 18358031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and functional models in molybdenum and tungsten bioinorganic chemistry: description of selected model complexes, present scenario and possible future scopes.
    Majumdar A
    Dalton Trans; 2014 Jun; 43(24):8990-9003. PubMed ID: 24798698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrophilic ester-bearing chlorogenic acid binds to a novel domain to inhibit xanthine oxidase.
    Wang SH; Chen CS; Huang SH; Yu SH; Lai ZY; Huang ST; Lin CM
    Planta Med; 2009 Sep; 75(11):1237-40. PubMed ID: 19330765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview.
    Romão MJ
    Dalton Trans; 2009 Jun; (21):4053-68. PubMed ID: 19452052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The molybdenum and tungsten cofactors: a crystallographic view.
    Dobbek H; Huber R
    Met Ions Biol Syst; 2002; 39():227-63. PubMed ID: 11913127
    [No Abstract]   [Full Text] [Related]  

  • 28. Use of density functional calculations to predict the regioselectivity of drugs and molecules metabolized by aldehyde oxidase.
    Torres RA; Korzekwa KR; McMasters DR; Fandozzi CM; Jones JP
    J Med Chem; 2007 Sep; 50(19):4642-7. PubMed ID: 17718551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of N-aryl-5-amino-4-cyanopyrazole derivatives as potent xanthine oxidase inhibitors.
    Gupta S; Rodrigues LM; Esteves AP; Oliveira-Campos AM; Nascimento MS; Nazareth N; Cidade H; Neves MP; Fernandes E; Pinto M; Cerqueira NM; Brás N
    Eur J Med Chem; 2008 Apr; 43(4):771-80. PubMed ID: 17692432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The molybdenum-containing hydroxylases of quinoline, isoquinoline, and quinaldine.
    Kappl R; Hüttermann J; Fetzner S
    Met Ions Biol Syst; 2002; 39():481-537. PubMed ID: 11913135
    [No Abstract]   [Full Text] [Related]  

  • 31. Ansa-bridged eta5-cyclopentadienyl molybdenum and tungsten complexes: synthesis, structure and application in olefin epoxidation.
    Zhao J; Jain KR; Herdtweck E; Kühn FE
    Dalton Trans; 2007 Dec; (47):5567-71. PubMed ID: 18043819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of Mo-C bonds in xanthine oxidase action.
    Lowe DJ; Richards RL; Bray RC
    Biochem Soc Trans; 1997 Aug; 25(3):774-8. PubMed ID: 9388543
    [No Abstract]   [Full Text] [Related]  

  • 33. Electronic structure of neutral and monoanionic tris(benzene-1,2-dithiolato)metal complexes of molybdenum and tungsten.
    Kapre RR; Bothe E; Weyhermüller T; DeBeer George S; Wieghardt K
    Inorg Chem; 2007 Jul; 46(14):5642-50. PubMed ID: 17567127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolites from the reduction of metronidazole by xanthine oxidase.
    Chrystal EJ; Koch RL; Goldman P
    Mol Pharmacol; 1980 Jul; 18(1):105-11. PubMed ID: 6893356
    [No Abstract]   [Full Text] [Related]  

  • 35. Towards the reaction mechanism of xanthine oxidase from EPR studies.
    Bray RC; Lowe DJ
    Biochem Soc Trans; 1997 Aug; 25(3):762-8. PubMed ID: 9388541
    [No Abstract]   [Full Text] [Related]  

  • 36. The oxidation of glutathione by cobalt/tungsten carbide contributes to hard metal-induced oxidative stress.
    Fenoglio I; Corazzari I; Francia C; Bodoardo S; Fubini B
    Free Radic Res; 2008 Aug; 42(8):437-745. PubMed ID: 18712631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent mechanistic studies of xanthine oxidase.
    Xia M; Ilich P; Dempski R; Hille R
    Biochem Soc Trans; 1997 Aug; 25(3):768-73. PubMed ID: 9388542
    [No Abstract]   [Full Text] [Related]  

  • 38. The structure of the periplasmic thiol-disulfide oxidoreductase SoxS from Paracoccus pantotrophus indicates a triple Trx/Grx/DsbC functionality in chemotrophic sulfur oxidation.
    Carius Y; Rother D; Friedrich CG; Scheidig AJ
    Acta Crystallogr D Biol Crystallogr; 2009 Mar; 65(Pt 3):229-40. PubMed ID: 19237745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic, structural, and EPR studies reveal that aldehyde oxidoreductase from Desulfovibrio gigas does not need a sulfido ligand for catalysis and give evidence for a direct Mo-C interaction in a biological system.
    Santos-Silva T; Ferroni F; Thapper A; Marangon J; González PJ; Rizzi AC; Moura I; Moura JJ; Romão MJ; Brondino CD
    J Am Chem Soc; 2009 Jun; 131(23):7990-8. PubMed ID: 19459677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molybdenum requirement for bacterial xanthine dehydrogenase activity.
    Mitidieri E; Affonso OR
    Biochim Biophys Acta; 1965 Aug; 105(2):371-3. PubMed ID: 4954639
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.