These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17530910)

  • 1. Getting to the core of the problem: origin of the luminescence from (Mg,Zn)O heterostructured nanowires.
    Rosenberg RA; Shenoy GK; Chisholm MF; Tien LC; Norton D; Pearton S
    Nano Lett; 2007 Jun; 7(6):1521-5. PubMed ID: 17530910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon excited ultraviolet photoluminescence of zinc oxide nanorods.
    Zhu G; Xu C; Zhu J; Lu C; Cui Y; Sun X
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5854-7. PubMed ID: 19198316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of gold nanotubes from removable MgO nanowires templates.
    Kim HW; Lee JW; Kebede MA; Kim HS; Srinivasa B; Kong MH; Lee C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5715-9. PubMed ID: 19198294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly conductive coaxial SnO(2)-In(2)O(3) heterostructured nanowires for Li ion battery electrodes.
    Kim DW; Hwang IS; Kwon SJ; Kang HY; Park KS; Choi YJ; Choi KJ; Park JG
    Nano Lett; 2007 Oct; 7(10):3041-5. PubMed ID: 17760477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate.
    Fang Y; Pang Q; Wen X; Wang J; Yang S
    Small; 2006 May; 2(5):612-5. PubMed ID: 17193095
    [No Abstract]   [Full Text] [Related]  

  • 6. High throughput growth of zinc oxide nanowires from zinc powder with the assistance of sodium chloride.
    Yang J; Wang W; Ma Y; Wang DZ; Steeves D; Kimball B; Ren ZF
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2196-9. PubMed ID: 17025149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly luminescent Cd1-xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range.
    Protière M; Reiss P
    Small; 2007 Mar; 3(3):399-403. PubMed ID: 17285646
    [No Abstract]   [Full Text] [Related]  

  • 8. Synthesis and characterization of germanium oxide nanowires.
    Kalyanikutty KP; Gundiah G; Govindaraj A; Rao CN
    J Nanosci Nanotechnol; 2005 Mar; 5(3):421-4. PubMed ID: 15913249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-interference lithography tailored for highly symmetrically arranged ZnO nanowire arrays.
    Kim DS; Ji R; Fan HJ; Bertram F; Scholz R; Dadgar A; Nielsch K; Krost A; Christen J; Gösele U; Zacharias M
    Small; 2007 Jan; 3(1):76-80. PubMed ID: 17294473
    [No Abstract]   [Full Text] [Related]  

  • 10. Wurtzite to zinc blende phase transition in GaAs nanowires induced by epitaxial burying.
    Patriarche G; Glas F; Tchernycheva M; Sartel C; Largeau L; Harmand JC; Cirlin GE
    Nano Lett; 2008 Jun; 8(6):1638-43. PubMed ID: 18471022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst-free synthesis of well-aligned ZnO nanowires on In0.2Ga0.8N, GaN, and Al0.25Ga0.75N substrates.
    Yang WQ; Dai L; You LP; Zhang BR; Shen B; Qin GG
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3780-3. PubMed ID: 17256330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of aligned ZnO nanorods.
    Pradhan AK; Williams TM; Zhang K; Hunter D; Dadson JB; Lord K; Roy UN; Cui Y; Burger A
    J Nanosci Nanotechnol; 2006 Jul; 6(7):1985-9. PubMed ID: 17025113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and rupture of Schottky nanocontacts on ZnO nanocolumns.
    Pérez-García B; Zúñiga-Pérez J; Muñoz-Sanjosé V; Colchero J; Palacios-Lidón E
    Nano Lett; 2007 Jun; 7(6):1505-11. PubMed ID: 17511510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics.
    van der Meulen MI; Petkov N; Morris MA; Kazakova O; Han X; Wang KL; Jacob AP; Holmes JD
    Nano Lett; 2009 Jan; 9(1):50-6. PubMed ID: 19032036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZnO nanotube based dye-sensitized solar cells.
    Martinson AB; Elam JW; Hupp JT; Pellin MJ
    Nano Lett; 2007 Aug; 7(8):2183-7. PubMed ID: 17602535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of suspended silicon nanowire arrays.
    Lee KN; Jung SW; Shin KS; Kim WH; Lee MH; Seong WK
    Small; 2008 May; 4(5):642-8. PubMed ID: 18431721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoluminescence, thermal transport, and breakdown in joule-heated GaN nanowires.
    Westover T; Jones R; Huang JY; Wang G; Lai E; Talin AA
    Nano Lett; 2009 Jan; 9(1):257-63. PubMed ID: 19090697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between the electrical properties of ZnO nanowires based field effect transistors fabricated by back- and top-gate approaches.
    Park YK; Umar A; Kim SH; Kim JH; Lee EW; Vaseem M; Hahn YB
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6010-6. PubMed ID: 19198339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties.
    Bourlinos AB; Stassinopoulos A; Anglos D; Herrera R; Anastasiadis SH; Petridis D; Giannelis EP
    Small; 2006 Apr; 2(4):513-6. PubMed ID: 17193077
    [No Abstract]   [Full Text] [Related]  

  • 20. A simple route to growth of silicon nanowires.
    Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.