These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 17530984)

  • 1. Whole-body vibration induced adaptation in knee extensors; consequences of initial strength, vibration frequency, and joint angle.
    Savelberg HH; Keizer HA; Meijer K
    J Strength Cond Res; 2007 May; 21(2):589-93. PubMed ID: 17530984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-body-vibration training increases knee-extension strength and speed of movement in older women.
    Roelants M; Delecluse C; Verschueren SM
    J Am Geriatr Soc; 2004 Jun; 52(6):901-8. PubMed ID: 15161453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term effects of whole-body vibration on maximal voluntary isometric knee extensor force and rate of force rise.
    de Ruiter CJ; van der Linden RM; van der Zijden MJ; Hollander AP; de Haan A
    Eur J Appl Physiol; 2003 Jan; 88(4-5):472-5. PubMed ID: 12527980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal whole-body vibration settings for muscle strength and power enhancement in human knee extensors.
    Petit PD; Pensini M; Tessaro J; Desnuelle C; Legros P; Colson SS
    J Electromyogr Kinesiol; 2010 Dec; 20(6):1186-95. PubMed ID: 20801671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in joint angle, muscle-tendon complex length, muscle contractile tissue displacement, and modulation of EMG activity during acute whole-body vibration.
    Cochrane DJ; Loram ID; Stannard SR; Rittweger J
    Muscle Nerve; 2009 Sep; 40(3):420-9. PubMed ID: 19618430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromuscular adaptations associated with knee joint angle-specific force change.
    Noorkõiv M; Nosaka K; Blazevich AJ
    Med Sci Sports Exerc; 2014 Aug; 46(8):1525-37. PubMed ID: 24504427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered squat jumping mechanics after specific exercise.
    Ullrich B; Heinrich K; Goldmann JP; Brüggemann GP
    Int J Sports Med; 2010 Apr; 31(4):243-50. PubMed ID: 20180174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strength increase after whole-body vibration compared with resistance training.
    Delecluse C; Roelants M; Verschueren S
    Med Sci Sports Exerc; 2003 Jun; 35(6):1033-41. PubMed ID: 12783053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of resistance training with whole-body vibration on muscle fitness in untrained adults.
    Osawa Y; Oguma Y
    Scand J Med Sci Sports; 2013 Feb; 23(1):84-95. PubMed ID: 21812821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of two different frequencies of whole-body vibration on knee extensors strength in healthy young volunteers: a randomized trial.
    Esmaeilzadeh S; Akpinar M; Polat S; Yildiz A; Oral A
    J Musculoskelet Neuronal Interact; 2015 Dec; 15(4):333-40. PubMed ID: 26636279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of whole body vibration durations on knee extensor strength.
    Stewart JA; Cochrane DJ; Morton RH
    J Sci Med Sport; 2009 Jan; 12(1):50-3. PubMed ID: 18078783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual force enhancement during voluntary contractions of knee extensors and flexors at short and long muscle lengths.
    Shim J; Garner B
    J Biomech; 2012 Apr; 45(6):913-8. PubMed ID: 22356842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low resonance frequency vibration affects strength of paretic and non-paretic leg differently in patients with stroke.
    Tihanyi J; Di Giminiani R; Tihanyi T; Gyulai G; Trzaskoma L; Horváth M
    Acta Physiol Hung; 2010 Jun; 97(2):172-82. PubMed ID: 20511126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are hamstrings activated to counteract shear forces during isometric knee extension efforts in healthy subjects?
    Kingma I; Aalbersberg S; van Dieën JH
    J Electromyogr Kinesiol; 2004 Jun; 14(3):307-15. PubMed ID: 15094144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-body vibration does not influence knee joint neuromuscular function or proprioception.
    Hannah R; Minshull C; Folland JP
    Scand J Med Sci Sports; 2013 Feb; 23(1):96-104. PubMed ID: 21819446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole body and local muscle vibration reduce artificially induced quadriceps arthrogenic inhibition.
    Blackburn JT; Pamukoff DN; Sakr M; Vaughan AJ; Berkoff DJ
    Arch Phys Med Rehabil; 2014 Nov; 95(11):2021-8. PubMed ID: 25083559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of isometric training at different knee angles on the muscle-tendon complex in vivo.
    Kubo K; Ohgo K; Takeishi R; Yoshinaga K; Tsunoda N; Kanehisa H; Fukunaga T
    Scand J Med Sci Sports; 2006 Jun; 16(3):159-67. PubMed ID: 16643193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of mono- and biarticular muscles to extending knee joint moments in runners and cyclists.
    Savelberg HH; Meijer K
    J Appl Physiol (1985); 2003 Jun; 94(6):2241-8. PubMed ID: 12533502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immediate effects of whole body vibration on patellar tendon properties and knee extension torque.
    Rieder F; Wiesinger HP; Kösters A; Müller E; Seynnes OR
    Eur J Appl Physiol; 2016 Mar; 116(3):553-61. PubMed ID: 26708361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint moment-angle properties of the hip abductors and hip extensors.
    Kindel C; Challis J
    Physiother Theory Pract; 2017 Jul; 33(7):568-575. PubMed ID: 28509596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.