These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17531273)

  • 1. Subcellular characterization of glucose uptake in coronary endothelial cells.
    Gaudreault N; Scriven DR; Laher I; Moore ED
    Microvasc Res; 2008 Jan; 75(1):73-82. PubMed ID: 17531273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric subcellular distribution of glucose transporters in the endothelium of small contractile arteries.
    Gaudreault N; Scriven DR; Moore ED
    Endothelium; 2006; 13(5):317-24. PubMed ID: 17090404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia.
    Gaudreault N; Scriven DR; Moore ED
    Diabetologia; 2004 Dec; 47(12):2081-92. PubMed ID: 15662550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorescence method for measurement of glucose transport in kidney cells.
    Blodgett AB; Kothinti RK; Kamyshko I; Petering DH; Kumar S; Tabatabai NM
    Diabetes Technol Ther; 2011 Jul; 13(7):743-51. PubMed ID: 21510766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A real-time method of imaging glucose uptake in single, living mammalian cells.
    Yamada K; Saito M; Matsuoka H; Inagaki N
    Nat Protoc; 2007; 2(3):753-62. PubMed ID: 17406637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow cytometric analysis of glucose transport by rat brain cells.
    Aller CB; Ehmann S; Gilman-Sachs A; Snyder AK
    Cytometry; 1997 Mar; 27(3):262-8. PubMed ID: 9041115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of fluorescent D- and L-glucose analogues, 2-NBDG and 2-NBDLG, into human osteosarcoma U2OS cells in a phloretin-inhibitable manner.
    Ogawa T; Sasaki A; Ono K; Ohshika S; Ishibashi Y; Yamada K
    Hum Cell; 2021 Mar; 34(2):634-643. PubMed ID: 33454890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confocal microscopy study of the different patterns of 2-NBDG uptake in rabbit enterocytes in the apical and basal zone.
    Román Y; Alfonso A; Louzao MC; Vieytes MR; Botana LM
    Pflugers Arch; 2001 Nov; 443(2):234-9. PubMed ID: 11713649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2.
    Kanwal A; Singh SP; Grover P; Banerjee SK
    Anal Biochem; 2012 Oct; 429(1):70-5. PubMed ID: 22796500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement.
    Zou C; Wang Y; Shen Z
    J Biochem Biophys Methods; 2005 Sep; 64(3):207-15. PubMed ID: 16182371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose and glucose transporters regulate lymphatic pump activity through activation of the mitochondrial ATP-sensitive K+ channel.
    Li X; Mizuno R; Ono N; Ohhashi T
    J Physiol Sci; 2008 Aug; 58(4):249-61. PubMed ID: 18597699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes.
    Barros LF; Bittner CX; Loaiza A; Ruminot I; Larenas V; Moldenhauer H; Oyarzún C; Alvarez M
    J Neurochem; 2009 May; 109 Suppl 1():94-100. PubMed ID: 19393014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syntheses of 2-NBDG analogues for monitoring stereoselective uptake of D-glucose.
    Yamamoto T; Tanaka S; Suga S; Watanabe S; Nagatomo K; Sasaki A; Nishiuchi Y; Teshima T; Yamada K
    Bioorg Med Chem Lett; 2011 Jul; 21(13):4088-96. PubMed ID: 21636274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Existence of two parallel mechanisms for glucose uptake in heterotrophic plant cells.
    Etxeberria E; González P; Tomlinson P; Pozueta-Romero J
    J Exp Bot; 2005 Jul; 56(417):1905-12. PubMed ID: 15911561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular binding and uptake of fluorescent glucose analogs 2-NBDG and 6-NBDG occurs independent of membrane glucose transporters.
    Hamilton KE; Bouwer MF; Louters LL; Looyenga BD
    Biochimie; 2021 Nov; 190():1-11. PubMed ID: 34224807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG.
    Chang HC; Yang SF; Huang CC; Lin TS; Liang PH; Lin CJ; Hsu LC
    Mol Biosyst; 2013 Aug; 9(8):2010-20. PubMed ID: 23657801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of transport and phosphorylation of glucose in cancer cells.
    Rodríguez-Enríquez S; Marín-Hernández A; Gallardo-Pérez JC; Moreno-Sánchez R
    J Cell Physiol; 2009 Dec; 221(3):552-9. PubMed ID: 19681047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascorbic acid-dependent GLUT3 inhibition is a critical step for switching neuronal metabolism.
    Beltrán FA; Acuña AI; Miró MP; Angulo C; Concha II; Castro MA
    J Cell Physiol; 2011 Dec; 226(12):3286-94. PubMed ID: 21321936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity, in Escherichia coli cells.
    Yoshioka K; Saito M; Oh KB; Nemoto Y; Matsuoka H; Natsume M; Abe H
    Biosci Biotechnol Biochem; 1996 Nov; 60(11):1899-901. PubMed ID: 8987871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulin does not regulate glucose transport and metabolism in human endothelium.
    Artwohl M; Brunmair B; Fürnsinn C; Hölzenbein T; Rainer G; Freudenthaler A; Porod EM; Huttary N; Baumgartner-Parzer SM
    Eur J Clin Invest; 2007 Aug; 37(8):643-50. PubMed ID: 17635575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.