BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17531290)

  • 1. Emissions of polycyclic aromatic hydrocarbons from thermal pre-treatment of waste hydrodesulfurization catalysts.
    Lai YC; Lee WJ; Huang KL; Huang HH
    Chemosphere; 2007 Sep; 69(2):200-8. PubMed ID: 17531290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycyclic aromatic hydrocarbons (PAHs) in burning and non-burning coal waste piles.
    Ribeiro J; Silva T; Mendonca Filho JG; Flores D
    J Hazard Mater; 2012 Jan; 199-200():105-10. PubMed ID: 22119194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emissions of polycyclic aromatic hydrocarbons from fluidized and fixed bed incinerators disposing petrochemical industrial biological sludge.
    Wang LC; Lin LF; Lai SO
    J Hazard Mater; 2009 Aug; 168(1):438-44. PubMed ID: 19272707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal catalysts supported on activated carbon fibers for removal of polycyclic aromatic hydrocarbons from incineration flue gas.
    Lin CL; Cheng YH; Liu ZS; Chen JY
    J Hazard Mater; 2011 Dec; 197():254-63. PubMed ID: 22019104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effects of the secondary furnace (afterburner) temperature and soot filtration.
    Wang J; Richter H; Howard JB; Levendis YA; Carlson J
    Environ Sci Technol; 2002 Feb; 36(4):797-808. PubMed ID: 11878400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of particulates, heavy metals and acid gas on the removals of NO and PAHs by V2O5-WO3 catalysts in waste incineration system.
    Chang FY; Chen JC; Wey MY; Tsai SA
    J Hazard Mater; 2009 Oct; 170(1):239-46. PubMed ID: 19500905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate of polycyclic aromatic hydrocarbons during vitrification of incinerator ash in a coke bed furnace.
    Kuo YM; Lin TC; Tsai PJ; Lee WJ; Lin HY
    Chemosphere; 2003 Apr; 51(4):313-9. PubMed ID: 12604083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal variation of polycyclic aromatic hydrocarbons in soil and air of Dalian areas, China: an assessment of soil-air exchange.
    Wang D; Yang M; Jia H; Zhou L; Li Y
    J Environ Monit; 2008 Sep; 10(9):1076-83. PubMed ID: 18728901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.
    Valavanidis A; Iliopoulos N; Gotsis G; Fiotakis K
    J Hazard Mater; 2008 Aug; 156(1-3):277-84. PubMed ID: 18249066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process.
    Lai YC; Lee WJ; Huang KL; Wu CM
    J Hazard Mater; 2008 Jun; 154(1-3):588-94. PubMed ID: 18060691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic oxidation of polycyclic aromatic hydrocarbons: intermediates identification and toxicity testing.
    Woo OT; Chung WK; Wong KH; Chow AT; Wong PK
    J Hazard Mater; 2009 Sep; 168(2-3):1192-9. PubMed ID: 19361920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil refinery sludge and green waste simulated windrow composting.
    Fountoulakis MS; Terzakis S; Georgaki E; Drakopoulou S; Sabathianakis I; Kouzoulakis M; Manios T
    Biodegradation; 2009 Apr; 20(2):177-89. PubMed ID: 18670891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Element and PAH constituents in the residues and liquid oil from biosludge pyrolysis in an electrical thermal furnace.
    Chiang HL; Lin KH; Lai N; Shieh ZX
    Sci Total Environ; 2014 May; 481():533-41. PubMed ID: 24631616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of concentrations of polycyclic aromatic compounds detected in dust samples from various regions of the world.
    Naspinski C; Lingenfelter R; Cizmas L; Naufal Z; He LY; Islamzadeh A; Li Z; Li Z; McDonald T; Donnelly KC
    Environ Int; 2008 Oct; 34(7):988-93. PubMed ID: 18452990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method.
    Park KH; Mohapatra D; Reddy BR
    J Hazard Mater; 2006 Nov; 138(2):311-6. PubMed ID: 16860466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil.
    Di Y; Cheung CS; Huang Z
    Sci Total Environ; 2009 Jan; 407(2):835-46. PubMed ID: 18947856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two stages catalytic pyrolysis of refuse derived fuel: production of biofuel via syncrude.
    Miskolczi N; Buyong F; Angyal A; Williams PT; Bartha L
    Bioresour Technol; 2010 Nov; 101(22):8881-90. PubMed ID: 20663664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and characterization of pyrolytic oils by pyrolysis of waste machinery oil.
    Sinağ A; Gülbay S; Uskan B; Uçar S; Ozgürler SB
    J Hazard Mater; 2010 Jan; 173(1-3):420-6. PubMed ID: 19744779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of metal recovery from spent petroleum catalysts and ash.
    Akcil A; Vegliò F; Ferella F; Okudan MD; Tuncuk A
    Waste Manag; 2015 Nov; 45():420-33. PubMed ID: 26188611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO(2) under UV light.
    Zhang L; Li P; Gong Z; Li X
    J Hazard Mater; 2008 Oct; 158(2-3):478-84. PubMed ID: 18372106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.