These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 17531475)

  • 41. Dissipation and phytoremediation of polycyclic aromatic hydrocarbons in freshly spiked and long-term field-contaminated soils.
    Wei R; Ni J; Li X; Chen W; Yang Y
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):7994-8003. PubMed ID: 28108918
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes.
    Lee SH; Lee WS; Lee CH; Kim JG
    J Hazard Mater; 2008 May; 153(1-2):892-8. PubMed ID: 17959304
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biochemical ripening of dredged sediments. Part 2. Degradation of polycyclic aromatic hydrocarbons and total petroleum hydrocarbons in slurried and consolidated sediments.
    Vermeulen J; van Gool MP; Mentink GH; Joziasse J; Bruning H; Rulkens WH; Grotenhuis JT
    Environ Toxicol Chem; 2007 Dec; 26(12):2540-9. PubMed ID: 18020678
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination.
    Pérez-Hernández I; Ochoa-Gaona S; Adams RH; Rivera-Cruz MC; Pérez-Hernández V; Jarquín-Sánchez A; Geissen V; Martínez-Zurimendi P
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1769-1783. PubMed ID: 27796985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Study of PAH dissipation and phytoremediation in soils: comparing freshly spiked with weathered soil from a former coking works.
    Smith MJ; Flowers TH; Duncan HJ; Saito H
    J Hazard Mater; 2011 Sep; 192(3):1219-25. PubMed ID: 21742434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of agronomic practices on phytoremediation of an aged PAH-contaminated soil.
    Olson PE; Castro A; Joern M; Duteau NM; Pilon-Smits E; Reardon KF
    J Environ Qual; 2008; 37(4):1439-46. PubMed ID: 18574175
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phytoremediation of crude oil contaminated soil using nut grass, Cyperus rotundus.
    Basumatary B; Saikia R; Bordoloi S
    J Environ Biol; 2012 Sep; 33(5):891-6. PubMed ID: 23734455
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation.
    Cofield N; Banks MK; Schwab AP
    Environ Pollut; 2007 Jan; 145(1):60-7. PubMed ID: 16806619
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Different responses to soil petroleum contamination in monocultured and mixed plant systems.
    Xie W; Li R; Li X; Liu P; Yang H; Wu T; Zhang Y
    Ecotoxicol Environ Saf; 2018 Oct; 161():763-768. PubMed ID: 29957584
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza.
    Joner EJ; Leyval C
    Environ Sci Technol; 2003 Jun; 37(11):2371-5. PubMed ID: 12831019
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil.
    Cartmill AD; Cartmill DL; Alarcón A
    Int J Phytoremediation; 2014; 16(3):285-301. PubMed ID: 24912225
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potential of vetiver (vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela.
    Brandt R; Merkl N; Schultze-Kraft R; Infante C; Broll G
    Int J Phytoremediation; 2006; 8(4):273-84. PubMed ID: 17305302
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons.
    Cook RL; Hesterberg D
    Int J Phytoremediation; 2013; 15(9):844-60. PubMed ID: 23819280
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Petroleum hydrocarbons degradation in contaminated soil using the plants of the Aster family.
    Prematuri R; Mardatin NF; Irdiastuti R; Turjaman M; Wagatsuma T; Tawaraya K
    Environ Sci Pollut Res Int; 2020 Feb; 27(4):4460-4467. PubMed ID: 31832957
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment.
    Peng S; Zhou Q; Cai Z; Zhang Z
    J Hazard Mater; 2009 Sep; 168(2-3):1490-6. PubMed ID: 19346069
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accumulation of Hydrocarbons by Maize (Zea mays L.) in Remediation of Soils Contaminated with Crude Oil.
    Liao C; Xu W; Lu G; Liang X; Guo C; Yang C; Dang Z
    Int J Phytoremediation; 2015; 17(7):693-700. PubMed ID: 25976883
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities.
    Zhou L; Li H; Zhang Y; Han S; Xu H
    Braz J Microbiol; 2016; 47(2):271-8. PubMed ID: 26991271
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances.
    Pinedo J; Ibáñez R; Lijzen JP; Irabien Á
    J Environ Manage; 2013 Nov; 130():72-9. PubMed ID: 24064142
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect.
    Chekol T; Vough LR; Chaney RL
    Environ Int; 2004 Aug; 30(6):799-804. PubMed ID: 15120198
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. I. Selection of promising woody plants.
    Sun WH; Lo JB; Robert FM; Ray C; Tang CS
    Environ Sci Pollut Res Int; 2004; 11(4):260-6. PubMed ID: 15341316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.