BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 17531497)

  • 1. Methodological considerations regarding the use of inorganic 197Hg(II) radiotracer to assess mercury methylation potential rates in lake sediment.
    Pérez Catán S; Guevara SR; Marvin-DiPasquale M; Magnavacca C; Cohen IM; Arribere M
    Appl Radiat Isot; 2007 Sep; 65(9):987-94. PubMed ID: 17531497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer.
    Ribeiro Guevara S; Zizek S; Repinc U; Pérez Catán S; Jaćimović R; Horvat M
    Anal Bioanal Chem; 2007 Mar; 387(6):2185-97. PubMed ID: 17205268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benthic methylmercury production in lacustrine ecosystems of Nahuel Huapi National Park, Patagonia, Argentina.
    Ribeiro Guevara S; Catán SP; Marvin-DiPasquale M
    Chemosphere; 2009 Oct; 77(4):471-7. PubMed ID: 19698971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments.
    Yu RQ; Flanders JR; Mack EE; Turner R; Mirza MB; Barkay T
    Environ Sci Technol; 2012 Mar; 46(5):2684-91. PubMed ID: 22148328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substantial emission of gaseous monomethylmercury from contaminated water-sediment microcosms.
    Jonsson S; Skyllberg U; Björn E
    Environ Sci Technol; 2010 Jan; 44(1):278-83. PubMed ID: 19950964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury methylation and reduction potentials in marine water: An improved methodology using 197Hg radiotracer.
    Koron N; Bratkič A; Ribeiro Guevara S; Vahčič M; Horvat M
    Appl Radiat Isot; 2012 Jan; 70(1):46-50. PubMed ID: 21820905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sediment composition on inorganic mercury partitioning, speciation and bioavailability in oxic surficial sediments.
    Zhong H; Wang WX
    Environ Pollut; 2008 Jan; 151(1):222-30. PubMed ID: 17482731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust microwave-assisted extraction protocol for determination of total mercury and methylmercury in fish tissues.
    Reyes LH; Rahman GM; Kingston HM
    Anal Chim Acta; 2009 Jan; 631(2):121-8. PubMed ID: 19084617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of speciated isotope dilution mass spectrometry to evaluate extraction methods for determining mercury speciation in soils and sediments.
    Rahman GM; Kingston HM
    Anal Chem; 2004 Jul; 76(13):3548-55. PubMed ID: 15228324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous radioassays of bacterial production and mercury methylation in the periphyton of a tropical and a temperate wetland.
    Guimarães JR; Mauro JB; Meili M; Sundbom M; Haglund AL; Coelho-Souza SA; Hylander LD
    J Environ Manage; 2006 Oct; 81(2):95-100. PubMed ID: 16956711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments.
    Zhong H; Wang WX
    Environ Pollut; 2009 Mar; 157(3):981-6. PubMed ID: 19028001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides.
    Zhang T; Kim B; Levard C; Reinsch BC; Lowry GV; Deshusses MA; Hsu-Kim H
    Environ Sci Technol; 2012 Jul; 46(13):6950-8. PubMed ID: 22145980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of elemental mercury in lake sediments.
    Bouffard A; Amyot M
    Chemosphere; 2009 Feb; 74(8):1098-103. PubMed ID: 19091379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylmercury production in the water column of an ultraoligotrophic lake of Northern Patagonia, Argentina.
    Ribeiro Guevara S; Queimaliños CP; Diéguez Mdel C; Arribére M
    Chemosphere; 2008 Jun; 72(4):578-85. PubMed ID: 18440585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiotic methylation of mercury in the aquatic environment.
    Celo V; Lean DR; Scott SL
    Sci Total Environ; 2006 Sep; 368(1):126-37. PubMed ID: 16226793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using sulfate-amended sediment slurry batch reactors to evaluate mercury methylation.
    Harmon SM; King JK; Gladden JB; Newman LA
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):326-31. PubMed ID: 17384981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The competitive role of organic carbon and dissolved sulfide in controlling the distribution of mercury in freshwater lake sediments.
    Belzile N; Lang CY; Chen YW; Wang M
    Sci Total Environ; 2008 Nov; 405(1-3):226-38. PubMed ID: 18657305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogeochemical changes and mercury methylation beneath an in-situ sediment cap.
    Johnson NW; Reible DD; Katz LE
    Environ Sci Technol; 2010 Oct; 44(19):7280-6. PubMed ID: 20504015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry for trace analysis of methylmercury and mercury(II) in water sample.
    Ito R; Kawaguchi M; Sakui N; Okanouchi N; Saito K; Seto Y; Nakazawa H
    Talanta; 2009 Feb; 77(4):1295-8. PubMed ID: 19084638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.