These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 17531497)

  • 61. Methylmercury: bacterial degradation in lake sediments.
    Spangler WJ; Spigarelli JL; Rose JM; Miller HM
    Science; 1973 Apr; 180(4082):192-3. PubMed ID: 17811660
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Micro-columns packed with Chlorella vulgaris immobilised on silica gel for mercury speciation.
    Tajes-Martínez P; Beceiro-González E; Muniategui-Lorenzo S; Prada-Rodríguez D
    Talanta; 2006 Feb; 68(5):1489-96. PubMed ID: 18970490
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments.
    Mazrui NM; Jonsson S; Thota S; Zhao J; Mason RP
    Geochim Cosmochim Acta; 2016 Dec; 194():153-162. PubMed ID: 28127088
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Kinetics and mechanism of the mercury(II)-assisted hydrolysis of methyl iodide.
    Celo V; Scott SL
    Inorg Chem; 2005 Apr; 44(7):2507-12. PubMed ID: 15792489
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Combination of Vortex Agitation and Ultrasonic Irradiation for Mercury Removal from Sediment by Acid Extraction.
    Nugraha WC; Jeong H; Phan Dinh Q; Ishibashi Y; Arizono K
    Bull Environ Contam Toxicol; 2022 Jun; 108(6):1118-1123. PubMed ID: 35258636
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of inorganic and organic ligands on the bioavailability of methylmercury as determined by using a mer-lux bioreporter.
    Ndu U; Mason RP; Zhang H; Lin S; Visscher PT
    Appl Environ Microbiol; 2012 Oct; 78(20):7276-82. PubMed ID: 22865079
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bacteria could be key to methylmercury paradox.
    Renner R
    Environ Sci Technol; 2004 Aug; 38(16):302A-303A. PubMed ID: 15382844
    [No Abstract]   [Full Text] [Related]  

  • 68. Measurement of mercury methylation in lake water and sediment samples.
    Furutani A; Rudd JW
    Appl Environ Microbiol; 1980 Oct; 40(4):770-6. PubMed ID: 16345649
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Coincidence assay techniques--Hg-197.
    Hudson FR; Waters SL; Davis JB
    J Nucl Med; 1978 Oct; 19(10):1183-5. PubMed ID: 722334
    [No Abstract]   [Full Text] [Related]  

  • 70. Preparation of 197Hg-labeled fibrinogen.
    Saha GB; Girschek PK; Farrer PA
    Int J Nucl Med Biol; 1977 Jan; 4(1):92-5. PubMed ID: 863585
    [No Abstract]   [Full Text] [Related]  

  • 71. Methodological considerations regarding online extraction of water from soils for stable isotope determination.
    Lazarus BE; Germino MJ
    Rapid Commun Mass Spectrom; 2017 Oct; 31(19):1677-1680. PubMed ID: 28763576
    [No Abstract]   [Full Text] [Related]  

  • 72. Substantial emission of gaseous monomethylmercury from contaminated water-sediment microcosms.
    Jonsson S; Skyllberg U; Björn E
    Environ Sci Technol; 2010 Jan; 44(1):278-83. PubMed ID: 19950964
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Methodological considerations regarding the use of inorganic 197Hg(II) radiotracer to assess mercury methylation potential rates in lake sediment.
    Pérez Catán S; Guevara SR; Marvin-DiPasquale M; Magnavacca C; Cohen IM; Arribere M
    Appl Radiat Isot; 2007 Sep; 65(9):987-94. PubMed ID: 17531497
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer.
    Ribeiro Guevara S; Zizek S; Repinc U; Pérez Catán S; Jaćimović R; Horvat M
    Anal Bioanal Chem; 2007 Mar; 387(6):2185-97. PubMed ID: 17205268
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Benthic methylmercury production in lacustrine ecosystems of Nahuel Huapi National Park, Patagonia, Argentina.
    Ribeiro Guevara S; Catán SP; Marvin-DiPasquale M
    Chemosphere; 2009 Oct; 77(4):471-7. PubMed ID: 19698971
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments.
    Yu RQ; Flanders JR; Mack EE; Turner R; Mirza MB; Barkay T
    Environ Sci Technol; 2012 Mar; 46(5):2684-91. PubMed ID: 22148328
    [TBL] [Abstract][Full Text] [Related]  

  • 77.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 78.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.