BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 17531814)

  • 1. The N terminus of Saccharomyces cerevisiae Msh6 is an unstructured tether to PCNA.
    Shell SS; Putnam CD; Kolodner RD
    Mol Cell; 2007 May; 26(4):565-78. PubMed ID: 17531814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes.
    Clark AB; Valle F; Drotschmann K; Gary RK; Kunkel TA
    J Biol Chem; 2000 Nov; 275(47):36498-501. PubMed ID: 11005803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition.
    Lee SD; Surtees JA; Alani E
    J Mol Biol; 2007 Feb; 366(1):53-66. PubMed ID: 17157869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer of the MSH2.MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA.
    Lau PJ; Kolodner RD
    J Biol Chem; 2003 Jan; 278(1):14-7. PubMed ID: 12435741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCNA and Msh2-Msh6 activate an Mlh1-Pms1 endonuclease pathway required for Exo1-independent mismatch repair.
    Goellner EM; Smith CE; Campbell CS; Hombauer H; Desai A; Putnam CD; Kolodner RD
    Mol Cell; 2014 Jul; 55(2):291-304. PubMed ID: 24981171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of new proliferating cell nuclear antigen (POL30) mutator mutants that are defective in DNA mismatch repair.
    Lau PJ; Flores-Rozas H; Kolodner RD
    Mol Cell Biol; 2002 Oct; 22(19):6669-80. PubMed ID: 12215524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mismatch Recognition by
    Li Y; Lombardo Z; Joshi M; Hingorani MM; Mukerji I
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MSH-MLH complexes formed at a DNA mismatch are disrupted by the PCNA sliding clamp.
    Bowers J; Tran PT; Joshi A; Liskay RM; Alani E
    J Mol Biol; 2001 Mar; 306(5):957-68. PubMed ID: 11237611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The properties of Msh2-Msh6 ATP binding mutants suggest a signal amplification mechanism in DNA mismatch repair.
    Graham WJ; Putnam CD; Kolodner RD
    J Biol Chem; 2018 Nov; 293(47):18055-18070. PubMed ID: 30237169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2-Msh6 mismatch repair protein.
    Antony E; Khubchandani S; Chen S; Hingorani MM
    DNA Repair (Amst); 2006 Feb; 5(2):153-62. PubMed ID: 16214425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair.
    Marsischky GT; Filosi N; Kane MF; Kolodner R
    Genes Dev; 1996 Feb; 10(4):407-20. PubMed ID: 8600025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of interactions between mismatch repair initiation factors and the replication processivity factor PCNA.
    Lee SD; Alani E
    J Mol Biol; 2006 Jan; 355(2):175-84. PubMed ID: 16303135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic Instability Promoted by Overexpression of Mismatch Repair Factors in Yeast: A Model for Understanding Cancer Progression.
    Chakraborty U; Dinh TA; Alani E
    Genetics; 2018 Jun; 209(2):439-456. PubMed ID: 29654124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of yeast MSH2-MSH6 suggests that the initiation of mismatch repair can be separated into discrete steps.
    Bowers J; Tran PT; Liskay RM; Alani E
    J Mol Biol; 2000 Sep; 302(2):327-38. PubMed ID: 10970737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of
    Bowen N; Kolodner RD
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):3607-3612. PubMed ID: 28265089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharomyces cerevisiae Msh2-Msh6 DNA binding kinetics reveal a mechanism of targeting sites for DNA mismatch repair.
    Zhai J; Hingorani MM
    Proc Natl Acad Sci U S A; 2010 Jan; 107(2):680-5. PubMed ID: 20080735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective mismatch repair depends on timely control of PCNA retention on DNA by the Elg1 complex.
    Paul Solomon Devakumar LJ; Gaubitz C; Lundblad V; Kelch BA; Kubota T
    Nucleic Acids Res; 2019 Jul; 47(13):6826-6841. PubMed ID: 31114918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutation in the MSH6 subunit of the Saccharomyces cerevisiae MSH2-MSH6 complex disrupts mismatch recognition.
    Bowers J; Sokolsky T; Quach T; Alani E
    J Biol Chem; 1999 Jun; 274(23):16115-25. PubMed ID: 10347163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs.
    Harrington JM; Kolodner RD
    Mol Cell Biol; 2007 Sep; 27(18):6546-54. PubMed ID: 17636021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple functions for the N-terminal region of Msh6.
    Clark AB; Deterding L; Tomer KB; Kunkel TA
    Nucleic Acids Res; 2007; 35(12):4114-23. PubMed ID: 17567610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.