BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17532018)

  • 1. Growth inhibitory indole acetic acid polyacetylenic ester from Japanese ivy (Hedera rhombea Bean).
    Yamazoe S; Hasegawa K; Shigemori H
    Phytochemistry; 2007 Jun; 68(12):1706-11. PubMed ID: 17532018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indoleacetic acid falcarindiol ester induces granulocytic differentiation of the human leukemia cell line HL-60.
    Tsolmon S; Kurita Y; Yamada P; Shigemori H; Isoda H
    Planta Med; 2009 Jan; 75(1):49-54. PubMed ID: 19031365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hederyne A, a new antimicrobial polyacetylene from galls of Hedera rhombea Bean.
    Yamazoe S; Hasegawa K; Ito J; Mikami Y; Shigemori H
    J Asian Nat Prod Res; 2007; 9(6-8):537-40. PubMed ID: 17885841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyacetylenes from the roots of Polyalthia debilis.
    Panthama N; Kanokmedhakul S; Kanokmedhakul K
    J Nat Prod; 2010 Aug; 73(8):1366-9. PubMed ID: 20795741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two new naturally occurring optical polyacetylene compounds from Torricellia angulata var intermedia and the determination of their absolute configurations.
    Pan W; Zhang Y; Xu B; Cao P; Liang G
    Nat Prod Res; 2006 Oct; 20(12):1098-104. PubMed ID: 17127663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oploxynes A and B, polyacetylenes from the stems of Oplopanax elatus.
    Yang MC; Kwon HC; Kim YJ; Lee KR; Yang HO
    J Nat Prod; 2010 May; 73(5):801-5. PubMed ID: 20387902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-activity relationship of acetylenes from galls of Hedera rhombea as plant growth inhibitors.
    Yamazoe S; Hasegawa K; Shigemori H
    Z Naturforsch C J Biosci; 2006; 61(7-8):536-40. PubMed ID: 16989313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytotoxic polyacetylenes from roots of Russian knapweed (Acroptilon repens (L.) DC.).
    Quintana N; Weir TL; Du J; Broeckling CD; Rieder JP; Stermitz FR; Paschke MW; Vivanco JM
    Phytochemistry; 2008 Oct; 69(14):2572-8. PubMed ID: 18789460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactive constituents of Cirsium japonicum var. australe.
    Lai WC; Wu YC; Dankó B; Cheng YB; Hsieh TJ; Hsieh CT; Tsai YC; El-Shazly M; Martins A; Hohmann J; Hunyadi A; Chang FR
    J Nat Prod; 2014 Jul; 77(7):1624-31. PubMed ID: 25025240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and activity of polyacetylene substituted 2-hydroxy acids, esters, and amides against microbes of clinical importance.
    Kyi S; Wongkattiya N; Warden AC; O'Shea MS; Deighton M; Macreadie I; Graichen FH
    Bioorg Med Chem Lett; 2010 Aug; 20(15):4555-7. PubMed ID: 20591665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxic C47-polyacetylene carboxylic acids from a marine sponge Pertrosia sp.
    Okamoto C; Nakao Y; Fujita T; Iwashita T; van Soest RW; Fusetani N; Matsunaga S
    J Nat Prod; 2007 Nov; 70(11):1816-9. PubMed ID: 17985844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequestered fulvinol-related polyacetylenes in Peltodoris atromaculata.
    Ciavatta ML; Nuzzo G; Takada K; Mathieu V; Kiss R; Villani G; Gavagnin M
    J Nat Prod; 2014 Jul; 77(7):1678-84. PubMed ID: 24950030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Montiporic acid D, a new polyacetylene carboxylic acid from scleractinian coral Montipora digitata.
    Kodani S; Sato K; Higuchi T; Casareto BE; Suzuki Y
    Nat Prod Res; 2013 Oct; 27(20):1859-62. PubMed ID: 23432335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel polyacetylenes from Coreopsis tinctoria Nutt.
    Liu Y; Du D; Liang Y; Xin G; Huang BZ; Huang W
    J Asian Nat Prod Res; 2015; 17(7):744-9. PubMed ID: 25563069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of indole-3-acetic acid in rice: identification and characterization of N-beta-D-glucopyranosyl indole-3-acetic acid and its conjugates.
    Kai K; Wakasa K; Miyagawa H
    Phytochemistry; 2007 Oct; 68(20):2512-22. PubMed ID: 17628621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-glucosyl-1H-indole derivatives from Cortinarius brunneus (Basidiomycetes).
    Teichert A; Schmidt J; Porzel A; Arnold N; Wessjohann L
    Chem Biodivers; 2008 Apr; 5(4):664-9. PubMed ID: 18421759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyacetylenes from the leaves of Vernonia scorpioides (Asteraceae) and their antiproliferative and antiherpetic activities.
    Pollo LA; Bosi CF; Leite AS; Rigotto C; Kratz J; Simões CM; Fonseca DE; Coimbra D; Caramori G; Nepel A; Campos FR; Barison A; Biavatti MW
    Phytochemistry; 2013 Nov; 95():375-83. PubMed ID: 23937905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species).
    Domagalski W; Schulze A; Bandurski RS
    Plant Physiol; 1987; 84(4):1107-13. PubMed ID: 11539676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana.
    Kai K; Horita J; Wakasa K; Miyagawa H
    Phytochemistry; 2007 Jun; 68(12):1651-63. PubMed ID: 17548096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New polyacetylene glucosides from the florets of Carthamus tinctorius and their weak anti-inflammatory activities.
    He J; Shen Y; Jiang JS; Yang YN; Feng ZM; Zhang PC; Yuan SP; Hou Q
    Carbohydr Res; 2011 Sep; 346(13):1903-8. PubMed ID: 21762885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.