BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17532061)

  • 1. Behavioural characterisation of the robotic mouse mutant.
    Oliver PL; Keays DA; Davies KE
    Behav Brain Res; 2007 Aug; 181(2):239-47. PubMed ID: 17532061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor coordination, exploration, and spatial learning in a natural mouse mutation (nervous) with Purkinje cell degeneration.
    Lalonde R; Strazielle C
    Behav Genet; 2003 Jan; 33(1):59-66. PubMed ID: 12645822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal analysis of motor symptoms and histopathology in woozy mice, a model of cerebellar ataxia.
    Hayashi T; Onozato T; Wanajo I; Hayashi M; Takeda H; Fujimori Y
    Neuroreport; 2017 Sep; 28(13):779-787. PubMed ID: 28723727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioural characterization of vitamin D receptor knockout mice.
    Burne TH; McGrath JJ; Eyles DW; Mackay-Sim A
    Behav Brain Res; 2005 Feb; 157(2):299-308. PubMed ID: 15639181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor coordination deficits in mice lacking RGS9.
    Blundell J; Hoang CV; Potts B; Gold SJ; Powell CM
    Brain Res; 2008 Jan; 1190():78-85. PubMed ID: 18073128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic ablation of the mammillary bodies in the Foxb1 mutant mouse leads to selective deficit of spatial working memory.
    Radyushkin K; Anokhin K; Meyer BI; Jiang Q; Alvarez-Bolado G; Gruss P
    Eur J Neurosci; 2005 Jan; 21(1):219-29. PubMed ID: 15654859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AF4 is a critical regulator of the IGF-1 signaling pathway during Purkinje cell development.
    Bitoun E; Finelli MJ; Oliver PL; Lee S; Davies KE
    J Neurosci; 2009 Dec; 29(49):15366-74. PubMed ID: 20007461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The robotic mouse: understanding the role of AF4, a cofactor of transcriptional elongation and chromatin remodelling, in purkinje cell function.
    Bitoun E; Davies KE
    Cerebellum; 2009 Sep; 8(3):175-83. PubMed ID: 19340490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous alternation, motor activity, and spatial learning in hot-foot mutant mice.
    Filali M; Lalonde R; Bensoula AN; Guastavino JM; Lestienne F
    J Comp Physiol A; 1996 Jan; 178(1):101-4. PubMed ID: 8568721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice.
    Nóbrega C; Nascimento-Ferreira I; Onofre I; Albuquerque D; Hirai H; Déglon N; de Almeida LP
    PLoS One; 2013; 8(1):e52396. PubMed ID: 23349684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease.
    Yhnell E; Dunnett SB; Brooks SP
    J Huntingtons Dis; 2016 May; 5(2):149-61. PubMed ID: 27258586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensorimotor learning in Dab1(scm) (scrambler) mutant mice.
    Lalonde R; Strazielle C
    Behav Brain Res; 2011 Apr; 218(2):350-2. PubMed ID: 21167868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration and motor coordination in dystonia musculorum mutant mice.
    Lalonde R; Joyal CC; Botez MI
    Physiol Behav; 1994 Aug; 56(2):277-80. PubMed ID: 7938238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal analysis of the behavioural phenotype in HdhQ92 Huntington's disease knock-in mice.
    Brooks S; Higgs G; Jones L; Dunnett SB
    Brain Res Bull; 2012 Jun; 88(2-3):148-55. PubMed ID: 20457229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in locomotor behavior revealed in mice deficient for the calcium-binding proteins parvalbumin, calbindin D-28k or both.
    Farré-Castany MA; Schwaller B; Gregory P; Barski J; Mariethoz C; Eriksson JL; Tetko IV; Wolfer D; Celio MR; Schmutz I; Albrecht U; Villa AE
    Behav Brain Res; 2007 Mar; 178(2):250-61. PubMed ID: 17275105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The robotic mouse: unravelling the function of AF4 in the cerebellum.
    Bitoun E; Davies KE
    Cerebellum; 2005; 4(4):250-60. PubMed ID: 16321881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments.
    Swarup V; Phaneuf D; Bareil C; Robertson J; Rouleau GA; Kriz J; Julien JP
    Brain; 2011 Sep; 134(Pt 9):2610-26. PubMed ID: 21752789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectopic expression of tyrosine hydroxylase in Zebrin II immunoreactive Purkinje cells in the cerebellum of the ataxic mutant mouse, pogo.
    Jeong YG; Kim MK; Hawkes R
    Brain Res Dev Brain Res; 2001 Aug; 129(2):201-9. PubMed ID: 11506864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of R6/2 HD transgenic mice for therapeutic studies in Huntington's disease: behavioral testing and impact of diabetes mellitus.
    Lüesse HG; Schiefer J; Spruenken A; Puls C; Block F; Kosinski CM
    Behav Brain Res; 2001 Nov; 126(1-2):185-95. PubMed ID: 11704263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myg1-deficient mice display alterations in stress-induced responses and reduction of sex-dependent behavioural differences.
    Philips MA; Abramov U; Lilleväli K; Luuk H; Kurrikoff K; Raud S; Plaas M; Innos J; Puussaar T; Kõks S; Vasar E
    Behav Brain Res; 2010 Feb; 207(1):182-95. PubMed ID: 19818808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.