These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17532119)

  • 1. Apatite and Portland/apatite composite cements obtained using a hydrothermal method for retaining heavy metals.
    Domínguez MI; Carpena J; Borschnek D; Centeno MA; Odriozola JA; Rose J
    J Hazard Mater; 2008 Jan; 150(1):99-108. PubMed ID: 17532119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and leachability of electric arc furnace dust made from remelting of stainless steel.
    Laforest G; Duchesne J
    J Hazard Mater; 2006 Jul; 135(1-3):156-64. PubMed ID: 16361056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal chemistry of sodium zirconium phosphate based simulated ceramic waste forms of effluent cations (Ba(2+), Sn(4+), Fe(3+), Cr(3+), Ni(2+) and Si(4+)) from light water reactor fuel reprocessing plants.
    Shrivastava OP; Chourasia R
    J Hazard Mater; 2008 May; 153(1-2):285-92. PubMed ID: 17905513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identify the injury implements by SEM/EDX and ICP-AES.
    Bai R; Wan L; Li H; Zhang Z; Ma Z
    Forensic Sci Int; 2007 Feb; 166(1):8-13. PubMed ID: 16621384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites.
    Giergiczny Z; Król A
    J Hazard Mater; 2008 Dec; 160(2-3):247-55. PubMed ID: 18423859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of steel foundry electric arc furnace dust solidified/stabilized with Portland cement.
    Salihoglu G; Pinarli V; Salihoglu NK; Karaca G
    J Environ Manage; 2007 Oct; 85(1):190-7. PubMed ID: 17084503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sources, nature, and fate of heavy metal-bearing particles in the sewer system.
    Houhou J; Lartiges BS; Montarges-Pelletier E; Sieliechi J; Ghanbaja J; Kohler A
    Sci Total Environ; 2009 Nov; 407(23):6052-62. PubMed ID: 19735936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of steel mill electric-arc furnace dust.
    Sofilić T; Rastovcan-Mioc A; Cerjan-Stefanović S; Novosel-Radović V; Jenko M
    J Hazard Mater; 2004 Jun; 109(1-3):59-70. PubMed ID: 15177746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steel foundry electric arc furnace dust management: stabilization by using lime and Portland cement.
    Salihoglu G; Pinarli V
    J Hazard Mater; 2008 May; 153(3):1110-6. PubMed ID: 17977656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical stability assessment of uranyl phosphates and apatites: selection of amendments for in situ remediation of uranium.
    Raicevic S; Wright JV; Veljkovic V; Conca JL
    Sci Total Environ; 2006 Feb; 355(1-3):13-24. PubMed ID: 15885755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling leaching behavior of solidified wastes using back-propagation neural networks.
    Bayar S; Demir I; Engin GO
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):843-50. PubMed ID: 18068228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of zinc solubility in stabilized/solidified electric arc furnace dust.
    Fernández-Olmo I; Lasa C; Irabien A
    J Hazard Mater; 2007 Jun; 144(3):720-4. PubMed ID: 17324503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure sintering of apatite-collagen composite.
    Hirota K; Nishihara K; Tanaka H
    Biomed Mater Eng; 1993; 3(3):147-51. PubMed ID: 8193566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sorption of heavy metal species by sediments in soakaways receiving urban road runoff.
    Murakami M; Nakajima F; Furumai H
    Chemosphere; 2008 Feb; 70(11):2099-109. PubMed ID: 17959221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of carbonated tricalcium silicate and its sorption capacity for heavy metals: a micron-scale composite adsorbent of active silicate gel and calcite.
    Chen Q; Hills CD; Yuan M; Liu H; Tyrer M
    J Hazard Mater; 2008 May; 153(1-2):775-83. PubMed ID: 17950999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of heavy metals and water content on the strength of magnesium phosphate cements.
    Buj I; Torras J; Casellas D; Rovira M; de Pablo J
    J Hazard Mater; 2009 Oct; 170(1):345-50. PubMed ID: 19473758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: bioaccumulation by chironomids and implications for ecological risk assessment.
    Desrosiers M; Gagnon C; Masson S; Martel L; Babut MP
    Sci Total Environ; 2008 Jan; 389(1):101-14. PubMed ID: 17900660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China.
    Lu X; Wang L; Lei K; Huang J; Zhai Y
    J Hazard Mater; 2009 Jan; 161(2-3):1058-62. PubMed ID: 18502044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.
    Shi C; Fernández-Jiménez A
    J Hazard Mater; 2006 Oct; 137(3):1656-63. PubMed ID: 16787699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of the reactivity of synthetic and natural apatites in the presence of aqueous metals.
    Dybowska A; Manning DA; Collins MJ; Wess T; Woodgate S; Valsami-Jones E
    Sci Total Environ; 2009 Apr; 407(8):2953-65. PubMed ID: 19187953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.