BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 17532511)

  • 1. Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases.
    Chen YY; Huang YF; Khoo KH; Meng TC
    Methods; 2007 Jul; 42(3):243-9. PubMed ID: 17532511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detergent-free biotin switch combined with liquid chromatography/tandem mass spectrometry in the analysis of S-nitrosylated proteins.
    Han P; Chen C
    Rapid Commun Mass Spectrom; 2008 Apr; 22(8):1137-45. PubMed ID: 18335467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of a soybean tyrosine-specific protein phosphatase.
    Dixon DP; Fordham-Skelton AP; Edwards R
    Biochemistry; 2005 May; 44(21):7696-703. PubMed ID: 15909984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a modified in-gel assay to identify protein tyrosine phosphatases that are oxidized and inactivated in vivo.
    Meng TC; Hsu SF; Tonks NK
    Methods; 2005 Jan; 35(1):28-36. PubMed ID: 15588983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric inhibition of PTP1B activity by selective modification of a non-active site cysteine residue.
    Hansen SK; Cancilla MT; Shiau TP; Kung J; Chen T; Erlanson DA
    Biochemistry; 2005 May; 44(21):7704-12. PubMed ID: 15909985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite.
    Takakura K; Beckman JS; MacMillan-Crow LA; Crow JP
    Arch Biochem Biophys; 1999 Sep; 369(2):197-207. PubMed ID: 10486138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation.
    Chen YY; Chu HM; Pan KT; Teng CH; Wang DL; Wang AH; Khoo KH; Meng TC
    J Biol Chem; 2008 Dec; 283(50):35265-72. PubMed ID: 18840608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential S-nitrosylation of proteins in Alzheimer's disease.
    Zahid S; Khan R; Oellerich M; Ahmed N; Asif AR
    Neuroscience; 2014 Jan; 256():126-36. PubMed ID: 24157928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of PTP1B via glutathionylation of the active site cysteine 215.
    Barrett WC; DeGnore JP; König S; Fales HM; Keng YF; Zhang ZY; Yim MB; Chock PB
    Biochemistry; 1999 May; 38(20):6699-705. PubMed ID: 10350489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide.
    Yang J; Groen A; Lemeer S; Jans A; Slijper M; Roe SM; den Hertog J; Barford D
    Biochemistry; 2007 Jan; 46(3):709-19. PubMed ID: 17223692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the oxidation states of the active site cysteine in a recombinant protein tyrosine phosphatase by electrospray mass spectrometry using on-line desalting.
    DeGnore JP; König S; Barrett WC; Chock PB; Fales HM
    Rapid Commun Mass Spectrom; 1998; 12(20):1457-62. PubMed ID: 9796533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-alkylating labeling strategy for site-specific identification of the s-nitrosoproteome.
    Chen YJ; Ku WC; Lin PY; Chou HC; Khoo KH; Chen YJ
    J Proteome Res; 2010 Dec; 9(12):6417-39. PubMed ID: 20925432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of cysteine residues and disulfide bonds in proteins by liquid chromatography/electrospray ionization tandem mass spectrometry.
    Yen TY; Joshi RK; Yan H; Seto NO; Palcic MM; Macher BA
    J Mass Spectrom; 2000 Aug; 35(8):990-1002. PubMed ID: 10972999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-nitrosylation of endogenous protein tyrosine phosphatases in endothelial insulin signaling.
    Hsu MF; Pan KT; Chang FY; Khoo KH; Urlaub H; Cheng CF; Chang GD; Haj FG; Meng TC
    Free Radic Biol Med; 2016 Oct; 99():199-213. PubMed ID: 27521458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2beta).
    Drake PG; Peters GH; Andersen HS; Hendriks W; Møller NP
    Biochem J; 2003 Jul; 373(Pt 2):393-401. PubMed ID: 12697028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation.
    Maejima Y; Adachi S; Morikawa K; Ito H; Isobe M
    J Mol Cell Cardiol; 2005 Jan; 38(1):163-74. PubMed ID: 15623433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
    van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H
    Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of protein tyrosine phosphatases by low-molecular-weight S-nitrosothiols and S-nitrosylated human serum albumin.
    Xian M; Wang K; Chen X; Hou Y; McGill A; Zhou B; Zhang ZY; Cheng JP; Wang PG
    Biochem Biophys Res Commun; 2000 Feb; 268(2):310-4. PubMed ID: 10679200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.