BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17532627)

  • 81. Effect of phosphate-solubilizing fungi Aspergillus awamori S29 on mungbean (Vigna radiata cv. RMG 492) growth.
    Jain R; Saxena J; Sharma V
    Folia Microbiol (Praha); 2012 Nov; 57(6):533-41. PubMed ID: 22661080
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Role of Karanja deoiled cake based medium in production of protease and fatty acids by Paecilomyces lilacinus 6029.
    Sharma A; Sharma S; Yadav S; Naik SN
    J Biosci Bioeng; 2014 Sep; 118(3):270-1. PubMed ID: 24704176
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Phosphate and carbon source regulation of alkaline phosphatase and phospholipase in Vibrio vulnificus.
    Oh WS; Im YS; Yeon KY; Yoon YJ; Kim JW
    J Microbiol; 2007 Aug; 45(4):311-7. PubMed ID: 17846584
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Isolation, Mutagenesis, and Organic Acid Secretion of a Highly Efficient Phosphate-Solubilizing Fungus.
    Yang T; Li L; Wang B; Tian J; Shi F; Zhang S; Wu Z
    Front Microbiol; 2022; 13():793122. PubMed ID: 35547144
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum).
    Nishanth D; Biswas DR
    Bioresour Technol; 2008 Jun; 99(9):3342-53. PubMed ID: 17905580
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Phosphate solubilization by Rhizobium strains.
    Sridevi M; Mallaiah KV
    Indian J Microbiol; 2009 Mar; 49(1):98-102. PubMed ID: 23100757
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Critical evaluation of phosphate solubilizing pseudomonads isolated from a partially recultivated potash tailings pile.
    Koch S; Majewski E; Schmeisky H; Schmidt FR
    Curr Microbiol; 2012 Aug; 65(2):202-6. PubMed ID: 22614101
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Phosphate assimilation by Chlorella and adjustment of phosphate concentration in basal medium for its cultivation.
    Qu CB; Wu ZY; Shi XM
    Biotechnol Lett; 2008 Oct; 30(10):1735-40. PubMed ID: 18566756
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Development of balanced medium composition for improved rifamycin B production by isolated Amycolatopsis sp. RSP-3.
    Mahalaxmi Y; Sathish T; Prakasham RS
    Lett Appl Microbiol; 2009 Nov; 49(5):533-8. PubMed ID: 19793193
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Zinc metal solubilization by Gluconacetobacter diazotrophicus and induction of pleomorphic cells.
    Saravanan VS; Osborne J; Madhaiyan M; Mathew L; Chung J; Ahn K; Sa T
    J Microbiol Biotechnol; 2007 Sep; 17(9):1477-82. PubMed ID: 18062225
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Factors determining rock phosphate solubilization by microorganisms isolated from soil.
    Nahas E
    World J Microbiol Biotechnol; 1996 Nov; 12(6):567-72. PubMed ID: 24415416
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Coproduction of thermostable amylase and beta-galactosidase enzymes by Geobacillus stearothermophilus SAB-40: aplication of Plackett-Burman design to evaluate culture requirements affecting enzyme production.
    Solimam NA
    J Microbiol Biotechnol; 2008 Apr; 18(4):695-703. PubMed ID: 18467863
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Studied enhancement strategies for phytoestrogens production in shake flasks by suspension culture of Psoralea corylifolia.
    Shinde AN; Malpathak N; Fulzele DP
    Bioresour Technol; 2009 Mar; 100(5):1833-9. PubMed ID: 19013062
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Acinetobacter strains IH9 and OCI1, two rhizospheric phosphate solubilizing isolates able to promote plant growth, constitute a new genomovar of Acinetobacter calcoaceticus.
    Peix A; Lang E; Verbarg S; Spröer C; Rivas R; Santa-Regina I; Mateos PF; Martínez-Molina E; Rodríguez-Barrueco C; Velázquez E
    Syst Appl Microbiol; 2009 Aug; 32(5):334-41. PubMed ID: 19467815
    [TBL] [Abstract][Full Text] [Related]  

  • 95. L+-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84.
    Petrov K; Urshev Z; Petrova P
    Food Microbiol; 2008 Jun; 25(4):550-7. PubMed ID: 18456109
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Isolation and characterization of Arthrobacter sp. HY2 capable of degrading a high concentration of p-nitrophenol.
    Qiu X; Wu P; Zhang H; Li M; Yan Z
    Bioresour Technol; 2009 Nov; 100(21):5243-8. PubMed ID: 19540107
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Analysis of the effect of nutritional factors on OTA and OTB biosynthesis and polyketide synthase gene expression in Aspergillus ochraceus.
    Abbas A; Valez H; Dobson AD
    Int J Food Microbiol; 2009 Sep; 135(1):22-7. PubMed ID: 19682762
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Incubation experiment demonstrates effects of carbon and nitrogen on microbial phosphate-solubilizing function.
    Sun H; Wu Y; Zhou J; Bing H
    Sci China Life Sci; 2017 Apr; 60(4):436-438. PubMed ID: 27888387
    [No Abstract]   [Full Text] [Related]  

  • 99. A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization.
    Wattanaphon HT; Kerdsin A; Thammacharoen C; Sangvanich P; Vangnai AS
    J Appl Microbiol; 2008 Aug; 105(2):416-23. PubMed ID: 18298537
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Semiselective isolation of the ethanol-imbibing sooty mould Baudoinia of distillery aging warehouses.
    Ewaze JO; Summerbell RC; Scott JA
    Can J Microbiol; 2008 Apr; 54(4):331-3. PubMed ID: 18389007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.