BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 1753288)

  • 1. Lateral geniculate neurons in behaving primates. II. Encoding of visual information in the temporal shape of the response.
    McClurkin JW; Gawne TJ; Optican LM; Richmond BJ
    J Neurophysiol; 1991 Sep; 66(3):794-808. PubMed ID: 1753288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral geniculate neurons in behaving primates. III. Response predictions of a channel model with multiple spatial-to-temporal filters.
    Gawne TJ; McClurkin JW; Richmond BJ; Optican LM
    J Neurophysiol; 1991 Sep; 66(3):809-23. PubMed ID: 1753289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral geniculate neurons in behaving primates. I. Responses to two-dimensional stimuli.
    McClurkin JW; Gawne TJ; Richmond BJ; Optican LM; Robinson DL
    J Neurophysiol; 1991 Sep; 66(3):777-93. PubMed ID: 1753287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis.
    Optican LM; Richmond BJ
    J Neurophysiol; 1987 Jan; 57(1):162-78. PubMed ID: 3559670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveform.
    Richmond BJ; Optican LM
    J Neurophysiol; 1987 Jan; 57(1):147-61. PubMed ID: 3559669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of inferior temporal neurons in visual memory. I. Temporal encoding of information about visual images, recalled images, and behavioral context.
    Eskandar EN; Richmond BJ; Optican LM
    J Neurophysiol; 1992 Oct; 68(4):1277-95. PubMed ID: 1432084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using response models to estimate channel capacity for neuronal classification of stationary visual stimuli using temporal coding.
    Wiener MC; Richmond BJ
    J Neurophysiol; 1999 Dec; 82(6):2861-75. PubMed ID: 10601425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primate striate and prestriate cortical neurons during discrimination. I. simultaneous temporal encoding of information about color and pattern.
    McClurkin JW; Optican LM
    J Neurophysiol; 1996 Jan; 75(1):481-95. PubMed ID: 8822572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations.
    Richmond BJ; Optican LM; Spitzer H
    J Neurophysiol; 1990 Aug; 64(2):351-69. PubMed ID: 2213122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons.
    McClurkin JW; Optican LM; Richmond BJ
    Vis Neurosci; 1994; 11(3):601-17. PubMed ID: 8038131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys.
    Levitt JB; Schumer RA; Sherman SM; Spear PD; Movshon JA
    J Neurophysiol; 2001 May; 85(5):2111-29. PubMed ID: 11353027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive effects among several stimulus parameters on the responses of striate cortical complex cells.
    Gawne TJ; Richmond BJ; Optican LM
    J Neurophysiol; 1991 Aug; 66(2):379-89. PubMed ID: 1774579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. II. Information transmission.
    Richmond BJ; Optican LM
    J Neurophysiol; 1990 Aug; 64(2):370-80. PubMed ID: 2213123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque.
    Tovee MJ; Rolls ET; Azzopardi P
    J Neurophysiol; 1994 Sep; 72(3):1049-60. PubMed ID: 7807195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic properties of thalamic neurons for vision.
    Alitto HJ; Usrey WM
    Prog Brain Res; 2005; 149():83-90. PubMed ID: 16226578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat.
    Guido W; Lu SM; Sherman SM
    J Neurophysiol; 1992 Dec; 68(6):2199-211. PubMed ID: 1491266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encoding of visual information by LGN bursts.
    Reinagel P; Godwin D; Sherman SM; Koch C
    J Neurophysiol; 1999 May; 81(5):2558-69. PubMed ID: 10322089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex.
    Martinez-Conde S; Macknik SL; Hubel DH
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13920-5. PubMed ID: 12361982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On temporal codes and the spatiotemporal response of neurons in the lateral geniculate nucleus.
    Golomb D; Kleinfeld D; Reid RC; Shapley RM; Shraiman BI
    J Neurophysiol; 1994 Dec; 72(6):2990-3003. PubMed ID: 7897504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Information processing in the LGN: a comparison of neural codes and cell types.
    Pregowska A; Casti A; Kaplan E; Wajnryb E; Szczepanski J
    Biol Cybern; 2019 Aug; 113(4):453-464. PubMed ID: 31243531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.